<
From version < 67.1 >
edited by Saxer Lin
on 2023/08/17 18:32
To version < 43.49 >
edited by Xiaoling
on 2023/05/16 15:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -41,7 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,7 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230610163213-1.png||height="404" width="699"]]
126 +[[image:image-20230513102034-2.png]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -139,7 +139,7 @@
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -== 1.9 Hole Option ==
139 +== Hole Option ==
143 143  
144 144  
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -219,44 +219,44 @@
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 220  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -0x01: EU868
230 +*0x01: EU868
234 234  
235 -0x02: US915
232 +*0x02: US915
236 236  
237 -0x03: IN865
234 +*0x03: IN865
238 238  
239 -0x04: AU915
236 +*0x04: AU915
240 240  
241 -0x05: KZ865
238 +*0x05: KZ865
242 242  
243 -0x06: RU864
240 +*0x06: RU864
244 244  
245 -0x07: AS923
242 +*0x07: AS923
246 246  
247 -0x08: AS923-1
244 +*0x08: AS923-1
248 248  
249 -0x09: AS923-2
246 +*0x09: AS923-2
250 250  
251 -0x0a: AS923-3
248 +*0x0a: AS923-3
252 252  
253 -0x0b: CN470
250 +*0x0b: CN470
254 254  
255 -0x0c: EU433
252 +*0x0c: EU433
256 256  
257 -0x0d: KR920
254 +*0x0d: KR920
258 258  
259 -0x0e: MA869
256 +*0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -280,22 +280,19 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 284  
285 285  For example:
286 286  
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 +1. All modes share the same Payload Explanation from HERE.
291 +1. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -2. All modes share the same Payload Explanation from HERE.
295 -
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 299  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 300  
301 301  
... ... @@ -302,8 +302,8 @@
302 302  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 303  
304 304  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 -|Value|Bat|(% style="width:191px" %)(((
299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 +|**Value**|Bat|(% style="width:191px" %)(((
307 307  Temperature(DS18B20)(PC13)
308 308  )))|(% style="width:78px" %)(((
309 309  ADC(PA4)
... ... @@ -318,6 +318,7 @@
318 318  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319 319  
320 320  
315 +
321 321  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 322  
323 323  
... ... @@ -324,8 +324,8 @@
324 324  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 -|Value|BAT|(% style="width:196px" %)(((
322 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
323 +|**Value**|BAT|(% style="width:196px" %)(((
329 329  Temperature(DS18B20)(PC13)
330 330  )))|(% style="width:87px" %)(((
331 331  ADC(PA4)
... ... @@ -332,7 +332,7 @@
332 332  )))|(% style="width:189px" %)(((
333 333  Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 -Distance measure by: 1) LIDAR-Lite V3HP
330 +Distance measure by:1) LIDAR-Lite V3HP
336 336  Or 2) Ultrasonic Sensor
337 337  )))|(% style="width:117px" %)Reserved
338 338  
... ... @@ -346,7 +346,7 @@
346 346  
347 347  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348 348  
349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
344 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
350 350  
351 351  [[image:image-20230512173903-6.png||height="596" width="715"]]
352 352  
... ... @@ -355,7 +355,7 @@
355 355  
356 356  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 357  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 -|Value|BAT|(% style="width:183px" %)(((
353 +|**Value**|BAT|(% style="width:183px" %)(((
359 359  Temperature(DS18B20)(PC13)
360 360  )))|(% style="width:173px" %)(((
361 361  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -363,7 +363,8 @@
363 363  ADC(PA4)
364 364  )))|(% style="width:323px" %)(((
365 365  Distance measure by:1)TF-Mini plus LiDAR
366 -Or 2) TF-Luna LiDAR
361 +Or 
362 +2) TF-Luna LiDAR
367 367  )))|(% style="width:188px" %)Distance signal  strength
368 368  
369 369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -371,7 +371,7 @@
371 371  
372 372  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 373  
374 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375 375  
376 376  [[image:image-20230512180609-7.png||height="555" width="802"]]
377 377  
... ... @@ -378,9 +378,9 @@
378 378  
379 379  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 380  
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
377 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382 382  
383 -[[image:image-20230610170047-1.png||height="452" width="799"]]
379 +[[image:image-20230513105207-4.png||height="469" width="802"]]
384 384  
385 385  
386 386  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -391,8 +391,8 @@
391 391  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 392  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 -|Value|(% style="width:68px" %)(((
390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 +|**Value**|(% style="width:68px" %)(((
396 396  ADC1(PA4)
397 397  )))|(% style="width:75px" %)(((
398 398  ADC2(PA5)
... ... @@ -416,7 +416,7 @@
416 416  
417 417  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 418  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 -|Value|BAT|(% style="width:186px" %)(((
415 +|**Value**|BAT|(% style="width:186px" %)(((
420 420  Temperature1(DS18B20)(PC13)
421 421  )))|(% style="width:82px" %)(((
422 422  ADC(PA4)
... ... @@ -427,10 +427,10 @@
427 427  
428 428  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429 429  
430 -
431 431  [[image:image-20230513134006-1.png||height="559" width="736"]]
432 432  
433 433  
429 +
434 434  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435 435  
436 436  
... ... @@ -438,18 +438,15 @@
438 438  
439 439  Each HX711 need to be calibrated before used. User need to do below two steps:
440 440  
441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
437 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 443  1. (((
444 444  Weight has 4 bytes, the unit is g.
445 -
446 -
447 -
448 448  )))
449 449  
450 450  For example:
451 451  
452 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
445 +**AT+GETSENSORVALUE =0**
453 453  
454 454  Response:  Weight is 401 g
455 455  
... ... @@ -459,17 +459,20 @@
459 459  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 460  **Size(bytes)**
461 461  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 -|Value|BAT|(% style="width:193px" %)(((
463 -Temperature(DS18B20)(PC13)
455 +|**Value**|BAT|(% style="width:193px" %)(((
456 +Temperature(DS18B20)
457 +(PC13)
464 464  )))|(% style="width:85px" %)(((
465 465  ADC(PA4)
466 466  )))|(% style="width:186px" %)(((
467 -Digital in(PB15) & Digital Interrupt(PA8)
461 +Digital in(PB15) &
462 +Digital Interrupt(PA8)
468 468  )))|(% style="width:100px" %)Weight
469 469  
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471 471  
472 472  
468 +
473 473  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474 474  
475 475  
... ... @@ -479,12 +479,11 @@
479 479  
480 480  [[image:image-20230512181814-9.png||height="543" width="697"]]
481 481  
482 -
483 483  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484 484  
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 -|Value|BAT|(% style="width:256px" %)(((
481 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
482 +|**Value**|BAT|(% style="width:256px" %)(((
488 488  Temperature(DS18B20)(PC13)
489 489  )))|(% style="width:108px" %)(((
490 490  ADC(PA4)
... ... @@ -497,6 +497,7 @@
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498 498  
499 499  
495 +
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
502 502  
... ... @@ -504,7 +504,7 @@
504 504  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
505 505  **Size(bytes)**
506 506  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 -|Value|BAT|(% style="width:188px" %)(((
503 +|**Value**|BAT|(% style="width:188px" %)(((
508 508  Temperature(DS18B20)
509 509  (PC13)
510 510  )))|(% style="width:83px" %)(((
... ... @@ -522,8 +522,8 @@
522 522  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 523  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 524  **Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 -|Value|BAT|(% style="width:207px" %)(((
521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 +|**Value**|BAT|(% style="width:207px" %)(((
527 527  Temperature(DS18B20)
528 528  (PC13)
529 529  )))|(% style="width:94px" %)(((
... ... @@ -545,19 +545,19 @@
545 545  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 546  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 547  **Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 -|Value|BAT|(((
550 -Temperature
551 -(DS18B20)(PC13)
544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 +|**Value**|BAT|(((
546 +Temperature1(DS18B20)
547 +(PC13)
552 552  )))|(((
553 -Temperature2
554 -(DS18B20)(PB9)
549 +Temperature2(DS18B20)
550 +(PB9)
555 555  )))|(((
556 556  Digital Interrupt
557 557  (PB15)
558 558  )))|(% style="width:193px" %)(((
559 -Temperature3
560 -(DS18B20)(PB8)
555 +Temperature3(DS18B20)
556 +(PB8)
561 561  )))|(% style="width:78px" %)(((
562 562  Count1(PA8)
563 563  )))|(% style="width:78px" %)(((
... ... @@ -582,61 +582,6 @@
582 582  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
585 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586 -
587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -[[image:image-20230817172209-2.png||height="439" width="683"]]
593 -
594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
596 -|Value|Bat|(% style="width:191px" %)(((
597 -Temperature(DS18B20)(PC13)
598 -)))|(% style="width:78px" %)(((
599 -ADC(PA4)
600 -)))|(% style="width:135px" %)(((
601 -PWM_Setting
602 -
603 -&Digital Interrupt(PA8)
604 -)))|(% style="width:70px" %)(((
605 -Pulse period
606 -)))|(% style="width:89px" %)(((
607 -Duration of high level
608 -)))
609 -
610 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 -
612 -
613 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
614 -
615 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
616 -
617 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
618 -
619 -
620 -===== 2.3.2.10.b  Downlink, PWM output =====
621 -
622 -[[image:image-20230817173800-3.png||height="412" width="685"]]
623 -
624 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
625 -
626 - xx xx xx is the output frequency, the unit is HZ.
627 -
628 - yy is the duty cycle of the output, the unit is %.
629 -
630 - zz zz is the time delay of the output, the unit is ms.
631 -
632 -
633 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
634 -
635 -The oscilloscope displays as follows:
636 -
637 -[[image:image-20230817173858-5.png||height="694" width="921"]]
638 -
639 -
640 640  === 2.3.3  ​Decode payload ===
641 641  
642 642  
... ... @@ -646,13 +646,13 @@
646 646  
647 647  The payload decoder function for TTN V3 are here:
648 648  
649 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
590 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
650 650  
651 651  
652 652  ==== 2.3.3.1 Battery Info ====
653 653  
654 654  
655 -Check the battery voltage for SN50v3-LB.
596 +Check the battery voltage for SN50v3.
656 656  
657 657  Ex1: 0x0B45 = 2885mV
658 658  
... ... @@ -700,24 +700,19 @@
700 700  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
701 701  
702 702  
703 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
644 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
704 704  
705 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
646 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
706 706  
707 707  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
708 708  
709 -
710 710  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
711 711  
712 712  
713 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
714 -
715 -[[image:image-20230811113449-1.png||height="370" width="608"]]
716 -
717 717  ==== 2.3.3.5 Digital Interrupt ====
718 718  
719 719  
720 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
656 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
721 721  
722 722  (% style="color:blue" %)** Interrupt connection method:**
723 723  
... ... @@ -730,18 +730,18 @@
730 730  
731 731  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
732 732  
733 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
669 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
734 734  
735 735  
736 736  (% style="color:blue" %)**Below is the installation example:**
737 737  
738 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
739 739  
740 740  * (((
741 -One pin to SN50v3-LB's PA8 pin
677 +One pin to SN50_v3's PA8 pin
742 742  )))
743 743  * (((
744 -The other pin to SN50v3-LB's VDD pin
680 +The other pin to SN50_v3's VDD pin
745 745  )))
746 746  
747 747  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -758,7 +758,7 @@
758 758  
759 759  The command is:
760 760  
761 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
697 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
762 762  
763 763  Below shows some screen captures in TTN V3:
764 764  
... ... @@ -765,7 +765,7 @@
765 765  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
766 766  
767 767  
768 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
769 769  
770 770  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
771 771  
... ... @@ -777,13 +777,12 @@
777 777  
778 778  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
779 779  
780 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
716 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
781 781  
782 -
783 783  Below is the connection to SHT20/ SHT31. The connection is as below:
784 784  
785 -[[image:image-20230610170152-2.png||height="501" width="846"]]
786 786  
721 +[[image:image-20230513103633-3.png||height="448" width="716"]]
787 787  
788 788  The device will be able to get the I2C sensor data now and upload to IoT Server.
789 789  
... ... @@ -811,7 +811,7 @@
811 811  
812 812  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
813 813  
814 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
749 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
815 815  
816 816  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
817 817  
... ... @@ -819,9 +819,8 @@
819 819  
820 820  [[image:image-20230512173903-6.png||height="596" width="715"]]
821 821  
757 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
822 822  
823 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
824 -
825 825  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
826 826  
827 827  **Example:**
... ... @@ -829,17 +829,16 @@
829 829  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
830 830  
831 831  
766 +
832 832  ==== 2.3.3.9  Battery Output - BAT pin ====
833 833  
769 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
834 834  
835 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
836 836  
837 -
838 838  ==== 2.3.3.10  +5V Output ====
839 839  
774 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
840 840  
841 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
842 -
843 843  The 5V output time can be controlled by AT Command.
844 844  
845 845  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -846,26 +846,21 @@
846 846  
847 847  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
848 848  
849 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
782 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
850 850  
851 851  
785 +
852 852  ==== 2.3.3.11  BH1750 Illumination Sensor ====
853 853  
854 -
855 855  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
856 856  
857 857  [[image:image-20230512172447-4.png||height="416" width="712"]]
858 858  
859 -
860 860  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
861 861  
862 862  
863 -==== 2.3.3.12  PWM MOD ====
795 +==== 2.3.3.12  Working MOD ====
864 864  
865 -
866 -==== 2.3.3.13  Working MOD ====
867 -
868 -
869 869  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
870 870  
871 871  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -881,9 +881,7 @@
881 881  * 6: MOD7
882 882  * 7: MOD8
883 883  * 8: MOD9
884 -* 9: MOD10
885 885  
886 -
887 887  == 2.4 Payload Decoder file ==
888 888  
889 889  
... ... @@ -894,6 +894,7 @@
894 894  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
895 895  
896 896  
823 +
897 897  == 2.5 Frequency Plans ==
898 898  
899 899  
... ... @@ -913,7 +913,6 @@
913 913  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
914 914  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
915 915  
916 -
917 917  == 3.2 General Commands ==
918 918  
919 919  
... ... @@ -930,18 +930,17 @@
930 930  == 3.3 Commands special design for SN50v3-LB ==
931 931  
932 932  
933 -These commands only valid for SN50v3-LB, as below:
859 +These commands only valid for S31x-LB, as below:
934 934  
935 935  
936 936  === 3.3.1 Set Transmit Interval Time ===
937 937  
938 -
939 939  Feature: Change LoRaWAN End Node Transmit Interval.
940 940  
941 941  (% style="color:blue" %)**AT Command: AT+TDC**
942 942  
943 943  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
944 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
869 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
945 945  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
946 946  30000
947 947  OK
... ... @@ -961,26 +961,23 @@
961 961  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
962 962  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
963 963  
964 -
965 965  === 3.3.2 Get Device Status ===
966 966  
967 -
968 968  Send a LoRaWAN downlink to ask the device to send its status.
969 969  
970 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
893 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
971 971  
972 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
895 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
973 973  
974 974  
975 975  === 3.3.3 Set Interrupt Mode ===
976 976  
977 -
978 978  Feature, Set Interrupt mode for GPIO_EXIT.
979 979  
980 980  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
981 981  
982 982  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
905 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
984 984  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
985 985  0
986 986  OK
... ... @@ -995,6 +995,7 @@
995 995  )))|(% style="width:157px" %)OK
996 996  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
997 997  Set Transmit Interval
920 +
998 998  trigger by rising edge.
999 999  )))|(% style="width:157px" %)OK
1000 1000  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -1010,10 +1010,8 @@
1010 1010  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1011 1011  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1012 1012  
1013 -
1014 1014  === 3.3.4 Set Power Output Duration ===
1015 1015  
1016 -
1017 1017  Control the output duration 5V . Before each sampling, device will
1018 1018  
1019 1019  ~1. first enable the power output to external sensor,
... ... @@ -1025,7 +1025,7 @@
1025 1025  (% style="color:blue" %)**AT Command: AT+5VT**
1026 1026  
1027 1027  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1028 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
949 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1029 1029  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1030 1030  500(default)
1031 1031  OK
... ... @@ -1043,16 +1043,14 @@
1043 1043  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1044 1044  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1045 1045  
1046 -
1047 1047  === 3.3.5 Set Weighing parameters ===
1048 1048  
1049 -
1050 1050  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1051 1051  
1052 1052  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1053 1053  
1054 1054  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1056 1056  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1057 1057  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1058 1058  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1069,10 +1069,8 @@
1069 1069  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1070 1070  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1071 1071  
1072 -
1073 1073  === 3.3.6 Set Digital pulse count value ===
1074 1074  
1075 -
1076 1076  Feature: Set the pulse count value.
1077 1077  
1078 1078  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1080,7 +1080,7 @@
1080 1080  (% style="color:blue" %)**AT Command: AT+SETCNT**
1081 1081  
1082 1082  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1083 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1084 1084  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1085 1085  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1086 1086  
... ... @@ -1093,16 +1093,14 @@
1093 1093  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1094 1094  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1095 1095  
1096 -
1097 1097  === 3.3.7 Set Workmode ===
1098 1098  
1099 -
1100 1100  Feature: Switch working mode.
1101 1101  
1102 1102  (% style="color:blue" %)**AT Command: AT+MOD**
1103 1103  
1104 1104  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1105 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1020 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1106 1106  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1107 1107  OK
1108 1108  )))
... ... @@ -1118,7 +1118,6 @@
1118 1118  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1119 1119  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1120 1120  
1121 -
1122 1122  = 4. Battery & Power Consumption =
1123 1123  
1124 1124  
... ... @@ -1131,45 +1131,27 @@
1131 1131  
1132 1132  
1133 1133  (% class="wikigeneratedid" %)
1134 -**User can change firmware SN50v3-LB to:**
1048 +User can change firmware SN50v3-LB to:
1135 1135  
1136 1136  * Change Frequency band/ region.
1137 1137  * Update with new features.
1138 1138  * Fix bugs.
1139 1139  
1140 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1054 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1141 1141  
1142 -**Methods to Update Firmware:**
1143 1143  
1144 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1145 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1057 +Methods to Update Firmware:
1146 1146  
1059 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1060 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1147 1147  
1148 1148  = 6. FAQ =
1149 1149  
1150 1150  == 6.1 Where can i find source code of SN50v3-LB? ==
1151 1151  
1152 -
1153 1153  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1154 1154  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1155 1155  
1156 -
1157 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1158 -
1159 -
1160 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1161 -
1162 -
1163 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1164 -
1165 -
1166 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1167 -
1168 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1169 -
1170 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1171 -
1172 -
1173 1173  = 7. Order Info =
1174 1174  
1175 1175  
... ... @@ -1193,10 +1193,8 @@
1193 1193  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1194 1194  * (% style="color:red" %)**NH**(%%): No Hole
1195 1195  
1196 -
1197 1197  = 8. ​Packing Info =
1198 1198  
1199 -
1200 1200  (% style="color:#037691" %)**Package Includes**:
1201 1201  
1202 1202  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1208,7 +1208,6 @@
1208 1208  * Package Size / pcs : cm
1209 1209  * Weight / pcs : g
1210 1210  
1211 -
1212 1212  = 9. Support =
1213 1213  
1214 1214  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0