Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,10 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 - 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,10 +79,8 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 - 86 86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 87 87 88 88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -107,7 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -126,7 +126,7 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 130 130 131 131 132 132 == 1.8 Mechanical == ... ... @@ -139,9 +139,8 @@ 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -== 1.9Hole Option ==138 +== Hole Option == 143 143 144 - 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 146 146 147 147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -154,7 +154,7 @@ 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,7 +162,7 @@ 162 162 163 163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 164 164 165 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -211,7 +211,7 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 ... ... @@ -219,44 +219,44 @@ 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 231 231 (% style="color:#037691" %)**Frequency Band**: 232 232 233 -0x01: EU868 228 +*0x01: EU868 234 234 235 -0x02: US915 230 +*0x02: US915 236 236 237 -0x03: IN865 232 +*0x03: IN865 238 238 239 -0x04: AU915 234 +*0x04: AU915 240 240 241 -0x05: KZ865 236 +*0x05: KZ865 242 242 243 -0x06: RU864 238 +*0x06: RU864 244 244 245 -0x07: AS923 240 +*0x07: AS923 246 246 247 -0x08: AS923-1 242 +*0x08: AS923-1 248 248 249 -0x09: AS923-2 244 +*0x09: AS923-2 250 250 251 -0x0a: AS923-3 246 +*0x0a: AS923-3 252 252 253 -0x0b: CN470 248 +*0x0b: CN470 254 254 255 -0x0c: EU433 250 +*0x0c: EU433 256 256 257 -0x0d: KR920 252 +*0x0d: KR920 258 258 259 -0x0e: MA869 254 +*0x0e: MA869 260 260 261 261 262 262 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -280,40 +280,25 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 284 284 285 285 For example: 286 286 287 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 288 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 293 293 294 -2. All modes share the same Payload Explanation from HERE. 295 - 296 -3. By default, the device will send an uplink message every 20 minutes. 297 - 298 - 299 299 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 300 300 301 - 302 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 303 303 304 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 -|Value|Bat|(% style="width:191px" %)((( 307 -Temperature(DS18B20)(PC13) 308 -)))|(% style="width:78px" %)((( 309 -ADC(PA4) 310 -)))|(% style="width:216px" %)((( 311 -Digital in(PB15)&Digital Interrupt(PA8) 312 -)))|(% style="width:308px" %)((( 313 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 -)))|(% style="width:154px" %)((( 315 -Humidity(SHT20 or SHT31) 316 -))) 295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 317 317 318 318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 319 319 ... ... @@ -320,152 +320,128 @@ 320 320 321 321 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 322 322 323 - 324 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 325 325 326 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 -|Value|BAT|(% style="width:196px" %)((( 329 -Temperature(DS18B20)(PC13) 330 -)))|(% style="width:87px" %)((( 331 -ADC(PA4) 332 -)))|(% style="width:189px" %)((( 333 -Digital in(PB15) & Digital Interrupt(PA8) 334 -)))|(% style="width:208px" %)((( 335 -Distance measure by: 1) LIDAR-Lite V3HP 336 -Or 2) Ultrasonic Sensor 337 -)))|(% style="width:117px" %)Reserved 305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 +|**Value**|BAT|((( 307 +Temperature(DS18B20) 308 +)))|ADC|Digital in & Digital Interrupt|((( 309 +Distance measure by: 310 +1) LIDAR-Lite V3HP 311 +Or 312 +2) Ultrasonic Sensor 313 +)))|Reserved 338 338 339 339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 340 340 317 +**Connection of LIDAR-Lite V3HP:** 341 341 342 - (% style="color:blue"%)**ConnectionfLIDAR-LiteV3HP:**319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]] 343 343 344 - [[image:image-20230512173758-5.png||height="563"width="712"]]321 +**Connection to Ultrasonic Sensor:** 345 345 323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 346 346 347 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 348 - 349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 350 - 351 -[[image:image-20230512173903-6.png||height="596" width="715"]] 352 - 353 - 354 354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 355 355 356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 358 -|Value|BAT|(% style="width:183px" %)((( 359 -Temperature(DS18B20)(PC13) 360 -)))|(% style="width:173px" %)((( 361 -Digital in(PB15) & Digital Interrupt(PA8) 362 -)))|(% style="width:84px" %)((( 363 -ADC(PA4) 364 -)))|(% style="width:323px" %)((( 327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 330 +)))|Digital in & Digital Interrupt|ADC|((( 365 365 Distance measure by:1)TF-Mini plus LiDAR 366 -Or 2) TF-Luna LiDAR 367 -)))|(% style="width:188px" %)Distance signal strength 332 +Or 333 +2) TF-Luna LiDAR 334 +)))|Distance signal strength 368 368 369 369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 370 370 371 - 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 375 375 376 -[[image:i mage-20230512180609-7.png||height="555"width="802"]]342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]] 377 377 378 - 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 382 382 383 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 384 384 350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 385 385 352 + 386 386 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 387 387 388 - 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 357 +|=((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 395 -|Value|(% style="width:68px" %)((( 396 -ADC1(PA4) 397 -)))|(% style="width:75px" %)((( 398 -ADC2(PA5) 399 -)))|((( 400 -ADC3(PA8) 401 -)))|((( 402 -Digital Interrupt(PB15) 403 -)))|(% style="width:304px" %)((( 404 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 405 -)))|(% style="width:163px" %)((( 406 -Humidity(SHT20 or SHT31) 407 -)))|(% style="width:53px" %)Bat 359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 +Digital in(PA12)&Digital Interrupt1(PB14) 362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 408 408 409 -[[image:i mage-20230513110214-6.png]]364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 410 410 411 411 412 412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 413 413 369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 414 414 415 - This modehas total11 bytes.Asshownbelow:371 +Hardware connection is as below, 416 416 417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 419 -|Value|BAT|(% style="width:186px" %)((( 420 -Temperature1(DS18B20)(PC13) 421 -)))|(% style="width:82px" %)((( 422 -ADC(PA4) 423 -)))|(% style="width:210px" %)((( 424 -Digital in(PB15) & Digital Interrupt(PA8) 425 -)))|(% style="width:191px" %)Temperature2(DS18B20) 426 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 373 +**( Note:** 427 427 428 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 429 429 378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 430 430 431 -[[image:i mage-20230513134006-1.png||height="559" width="736"]]380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 432 432 382 +This mode has total 11 bytes. As shown below: 433 433 384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 385 +|**Value**|BAT|((( 386 +Temperature1 387 +(DS18B20) 388 +(PB3) 389 +)))|ADC|Digital in & Digital Interrupt|Temperature2 390 +(DS18B20) 391 +(PA9)|Temperature3 392 +(DS18B20) 393 +(PA10) 394 + 395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 + 397 + 434 434 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 435 435 400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 436 436 437 -[[image:image-20230512164658-2.png||height="532" width="729"]] 438 438 403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 + 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 443 1. ((( 444 -Weight has 4 bytes, the unit is g. 445 - 446 - 447 - 410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 448 448 ))) 449 449 450 450 For example: 451 451 452 - (% style="color:blue" %)**AT+GETSENSORVALUE=0**415 +**AT+WEIGAP =403.0** 453 453 454 454 Response: Weight is 401 g 455 455 456 456 Check the response of this command and adjust the value to match the real value for thing. 457 457 458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 459 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 421 +|=((( 460 460 **Size(bytes)** 461 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 462 -|Value|BAT|(% style="width:193px" %)((( 463 -Temperature(DS18B20)(PC13) 464 -)))|(% style="width:85px" %)((( 465 -ADC(PA4) 466 -)))|(% style="width:186px" %)((( 467 -Digital in(PB15) & Digital Interrupt(PA8) 468 -)))|(% style="width:100px" %)Weight 423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 469 469 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 ... ... @@ -472,174 +472,92 @@ 472 472 473 473 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 474 474 475 - 476 476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 477 477 478 478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 479 479 480 -[[image:i mage-20230512181814-9.png||height="543" width="697"]]435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]] 481 481 437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 482 482 483 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 484 484 485 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 487 -|Value|BAT|(% style="width:256px" %)((( 488 -Temperature(DS18B20)(PC13) 489 -)))|(% style="width:108px" %)((( 490 -ADC(PA4) 491 -)))|(% style="width:126px" %)((( 492 -Digital in(PB15) 493 -)))|(% style="width:145px" %)((( 494 -Count(PA8) 495 -))) 496 - 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 498 498 499 499 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 502 502 503 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 451 +|=((( 505 505 **Size(bytes)** 506 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 507 -|Value|BAT|(% style="width:188px" %)((( 508 -Temperature(DS18B20) 509 -(PC13) 510 -)))|(% style="width:83px" %)((( 511 -ADC(PA5) 512 -)))|(% style="width:184px" %)((( 513 -Digital Interrupt1(PA8) 514 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 +Digital in(PA12)&Digital Interrupt1(PB14) 456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 515 515 516 -[[image:image-20230513111203-7.png||height="324" width="975"]] 517 - 518 - 519 519 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 520 520 521 - 522 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 460 +|=((( 524 524 **Size(bytes)** 525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 526 -|Value|BAT|(% style="width:207px" %)((( 527 -Temperature(DS18B20) 528 -(PC13) 529 -)))|(% style="width:94px" %)((( 530 -ADC1(PA4) 531 -)))|(% style="width:198px" %)((( 532 -Digital Interrupt(PB15) 533 -)))|(% style="width:84px" %)((( 534 -ADC2(PA5) 535 -)))|(% style="width:82px" %)((( 536 -ADC3(PA8) 462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 +|**Value**|BAT|Temperature(DS18B20)|((( 464 +ADC1(PA0) 465 +)))|((( 466 +Digital in 467 +& Digital Interrupt(PB14) 468 +)))|((( 469 +ADC2(PA1) 470 +)))|((( 471 +ADC3(PA4) 537 537 ))) 538 538 539 -[[image:image-202 30513111231-8.png||height="335" width="900"]]474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 540 540 541 541 542 542 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 543 543 544 - 545 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 +|=((( 547 547 **Size(bytes)** 548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 549 -|Value|BAT|((( 550 -Temperature 551 -(DS18B20)(PC13) 481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 482 +|**Value**|BAT|((( 483 +Temperature1(PB3) 552 552 )))|((( 553 -Temperature2 554 -(DS18B20)(PB9) 485 +Temperature2(PA9) 555 555 )))|((( 556 -Digital Interrupt 557 -(PB15) 558 -)))|(% style="width:193px" %)((( 559 -Temperature3 560 -(DS18B20)(PB8) 561 -)))|(% style="width:78px" %)((( 562 -Count1(PA8) 563 -)))|(% style="width:78px" %)((( 564 -Count2(PA4) 487 +Digital in 488 +& Digital Interrupt(PA4) 489 +)))|((( 490 +Temperature3(PA10) 491 +)))|((( 492 +Count1(PB14) 493 +)))|((( 494 +Count2(PB15) 565 565 ))) 566 566 567 -[[image:image-202 30513111255-9.png||height="341"width="899"]]497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 568 568 569 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**499 +**The newly added AT command is issued correspondingly:** 570 570 571 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**501 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 572 572 573 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**503 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 574 574 575 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**505 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 576 576 507 +**AT+SETCNT=aa,bb** 577 577 578 - (%style="color:blue"%)**AT+SETCNT=aa,bb**509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 579 579 580 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 581 581 582 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 583 583 584 584 585 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 586 - 587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 -[[image:image-20230817172209-2.png||height="439" width="683"]] 593 - 594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 596 -|Value|Bat|(% style="width:191px" %)((( 597 -Temperature(DS18B20)(PC13) 598 -)))|(% style="width:78px" %)((( 599 -ADC(PA4) 600 -)))|(% style="width:135px" %)((( 601 -PWM_Setting 602 - 603 -&Digital Interrupt(PA8) 604 -)))|(% style="width:70px" %)((( 605 -Pulse period 606 -)))|(% style="width:89px" %)((( 607 -Duration of high level 608 -))) 609 - 610 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 611 - 612 - 613 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 614 - 615 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 616 - 617 -When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 618 - 619 - 620 -===== 2.3.2.10.b Downlink, PWM output ===== 621 - 622 -[[image:image-20230817173800-3.png||height="412" width="685"]] 623 - 624 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 625 - 626 - xx xx xx is the output frequency, the unit is HZ. 627 - 628 - yy is the duty cycle of the output, the unit is %. 629 - 630 - zz zz is the time delay of the output, the unit is ms. 631 - 632 - 633 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 634 - 635 -The oscilloscope displays as follows: 636 - 637 -[[image:image-20230817173858-5.png||height="694" width="921"]] 638 - 639 - 640 640 === 2.3.3 Decode payload === 641 641 642 - 643 643 While using TTN V3 network, you can add the payload format to decode the payload. 644 644 645 645 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -646,14 +646,13 @@ 646 646 647 647 The payload decoder function for TTN V3 are here: 648 648 649 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]523 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 650 650 651 651 652 652 ==== 2.3.3.1 Battery Info ==== 653 653 528 +Check the battery voltage for SN50v3. 654 654 655 -Check the battery voltage for SN50v3-LB. 656 - 657 657 Ex1: 0x0B45 = 2885mV 658 658 659 659 Ex2: 0x0B49 = 2889mV ... ... @@ -661,18 +661,16 @@ 661 661 662 662 ==== 2.3.3.2 Temperature (DS18B20) ==== 663 663 537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 664 664 665 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 666 666 667 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]541 +**Connection:** 668 668 669 - (% style="color:blue"%)**Connection:**543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]] 670 670 671 - [[image:image-20230512180718-8.png||height="538" width="647"]]545 +**Example**: 672 672 673 - 674 -(% style="color:blue" %)**Example**: 675 - 676 676 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 677 677 678 678 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -682,73 +682,87 @@ 682 682 683 683 ==== 2.3.3.3 Digital Input ==== 684 684 556 +The digital input for pin PA12, 685 685 686 -The digital input for pin PB15, 558 +* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 +* When PA12 is low, the bit 1 of payload byte 6 is 0. 687 687 688 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 689 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 561 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 690 690 691 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 692 -((( 693 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 563 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin. 694 694 695 - (%style="color:red"%)**Note:The maximumvoltageinput supports3.6V.**565 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink. 696 696 567 +The ADC monitors the voltage on the PA0 line, in mV. 568 + 569 +Ex: 0x021F = 543mv, 570 + 571 +**~ Example1:** Reading an Oil Sensor (Read a resistance value): 572 + 573 + 574 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 575 + 576 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 697 697 698 -))) 699 699 700 - ==== 2.3.3.4 Analogue Digital Converter (ADC) ====579 +**Steps:** 701 701 581 +1. Solder a 10K resistor between PA0 and VCC. 582 +1. Screw oil sensor's two pins to PA0 and PB4. 702 702 703 -The measuring rangeof the ADC is only about0.1V to 1.1V The voltageresolutionis about 0.24mv.584 +The equipment circuit is as below: 704 704 705 - When themeasured output voltageof the sensor is notthin therangeof 0.1V and 1.1V, theoutput voltage terminalof the sensor shall bedivided The exampleinthellowing figure is toreducetheoutput voltageof the sensorby three timesIf it is necessary to reducemoretimes, calculate accordingto theformula inthe figurend connectthe correspondingresistance in series.586 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]] 706 706 707 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]588 +According to above diagram: 708 708 590 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 709 709 710 - (% style="color:red" %)**Note: If the ADC type sensor needs to be powered bySN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**592 +So 711 711 594 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 712 712 713 - Theositionf PA5onthe hardwareter**LSN50v3.3** is changedtothepositionhown in the figurebelow,and thecollectedvoltagebecomesone-sixth oftheoriginal.596 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v 714 714 715 -[[image:image-202 30811113449-1.png||height="370" width="608"]]598 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm 716 716 717 - ====2.3.3.5DigitalInterrupt====600 +Since the Bouy is linear resistance from 10 ~~ 70cm. 718 718 602 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy. 719 719 720 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 721 721 722 - (%style="color:blue"%)**Interruptconnection method:**605 +==== 2.3.3.5 Digital Interrupt ==== 723 723 724 - [[image:image-20230513105351-5.png||height="147"width="485"]]607 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 725 725 609 +**~ Interrupt connection method:** 726 726 727 - (% style="color:blue"%)**Example touse withdoorsor:**611 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 728 728 613 +**Example to use with door sensor :** 614 + 729 729 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 730 730 731 731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 732 732 733 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.619 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 734 734 621 +**~ Below is the installation example:** 735 735 736 - (%style="color:blue"%)**Belowisthe installationexample:**623 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 737 737 738 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 739 - 740 740 * ((( 741 -One pin to SN50 v3-LB's PA8pin626 +One pin to LSN50's PB14 pin 742 742 ))) 743 743 * ((( 744 -The other pin to SN50 v3-LB's VDDpin629 +The other pin to LSN50's VCC pin 745 745 ))) 746 746 747 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.632 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 748 748 749 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.634 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 750 750 751 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.636 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 752 752 753 753 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 754 754 ... ... @@ -758,33 +758,35 @@ 758 758 759 759 The command is: 760 760 761 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/646 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 762 762 763 763 Below shows some screen captures in TTN V3: 764 764 765 765 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 766 766 652 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 767 767 768 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 769 - 770 770 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 771 771 656 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 772 772 773 - ====2.3.3.6I2CInterface(SHT20&SHT31)====658 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board. 774 774 660 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 775 775 776 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 777 777 778 - Wehavemadean example to show how to use theI2Cinterfaceto connect to theSHT20/SHT31 Temperature and Humidity Sensor.663 +==== 2.3.3.6 I2C Interface (SHT20) ==== 779 779 780 - (% style="color:red"%)**Notice:DifferentI2Csensors have differentI2Ccommands set andinitiateprocess,ifuserwanttouseother I2Csensors,Userneedtore-writethesourcecodetosupportthose sensors.SHT20/ SHT31 code in SN50v3-LB will beagood reference.**665 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 781 781 667 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 782 782 669 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference. 670 + 783 783 Below is the connection to SHT20/ SHT31. The connection is as below: 784 784 785 -[[image:image-202 30610170152-2.png||height="501" width="846"]]673 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 786 786 787 - 788 788 The device will be able to get the I2C sensor data now and upload to IoT Server. 789 789 790 790 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -802,26 +802,21 @@ 802 802 803 803 ==== 2.3.3.7 Distance Reading ==== 804 804 692 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 805 805 806 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 807 807 808 - 809 809 ==== 2.3.3.8 Ultrasonic Sensor ==== 810 810 697 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 811 811 812 -Th isFundamental Principles of thissensorcanbe found atthislink:[[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]699 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 813 813 814 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 815 - 816 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 817 - 818 818 The picture below shows the connection: 819 819 820 -[[image:i mage-20230512173903-6.png||height="596" width="715"]]703 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]] 821 821 705 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 822 822 823 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 824 - 825 825 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 826 826 827 827 **Example:** ... ... @@ -828,43 +828,49 @@ 828 828 829 829 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 830 830 713 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 831 831 832 - ==== 2.3.3.9 Battery Output-BATpin==715 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 833 833 717 +You can see the serial output in ULT mode as below: 834 834 835 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.719 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 836 836 721 +**In TTN V3 server:** 837 837 838 - ==== 2.3.3.10+5VOutput===723 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 839 839 725 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 840 840 841 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.727 +==== 2.3.3.9 Battery Output - BAT pin ==== 842 842 843 -The 5 Voutput timecanbecontrolledbyATCommand.729 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 844 844 845 -(% style="color:blue" %)**AT+5VT=1000** 846 846 847 - Meansset 5V valid time to have1000ms.So the real5Voutputwill actually have 1000ms + sampling time for other sensors.732 +==== 2.3.3.10 +5V Output ==== 848 848 849 - Bydefault the**AT+5VT=500**.Ifthe externalsensorwhich require5vand require more time to get stablestate, user canuse this commandtoincrease thepowerON durationforthissensor.734 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 850 850 736 +The 5V output time can be controlled by AT Command. 851 851 852 -= === 2.3.3.11 BH1750Illumination Sensor ====738 +**AT+5VT=1000** 853 853 740 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 854 854 855 - MOD=1support thissensor.Thesensorvalueis in the8^^th^^and9^^th^^bytes.742 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 856 856 857 -[[image:image-20230512172447-4.png||height="416" width="712"]] 858 858 859 859 860 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]746 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 861 861 748 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 862 862 863 - ==== 2.3.3.12PWMMOD====750 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]] 864 864 752 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 865 865 866 -==== 2.3.3.13 Working MOD ==== 867 867 755 +==== 2.3.3.12 Working MOD ==== 868 868 869 869 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 870 870 ... ... @@ -878,12 +878,7 @@ 878 878 * 3: MOD4 879 879 * 4: MOD5 880 880 * 5: MOD6 881 -* 6: MOD7 882 -* 7: MOD8 883 -* 8: MOD9 884 -* 9: MOD10 885 885 886 - 887 887 == 2.4 Payload Decoder file == 888 888 889 889 ... ... @@ -891,9 +891,10 @@ 891 891 892 892 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 893 893 894 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]777 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 895 895 896 896 780 + 897 897 == 2.5 Frequency Plans == 898 898 899 899 ... ... @@ -913,7 +913,6 @@ 913 913 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 914 914 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 915 915 916 - 917 917 == 3.2 General Commands == 918 918 919 919 ... ... @@ -930,7 +930,7 @@ 930 930 == 3.3 Commands special design for SN50v3-LB == 931 931 932 932 933 -These commands only valid for S N50v3-LB, as below:816 +These commands only valid for S31x-LB, as below: 934 934 935 935 936 936 === 3.3.1 Set Transmit Interval Time === ... ... @@ -941,7 +941,7 @@ 941 941 (% style="color:blue" %)**AT Command: AT+TDC** 942 942 943 943 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 944 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**827 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 945 945 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 946 946 30000 947 947 OK ... ... @@ -961,32 +961,30 @@ 961 961 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 962 962 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 963 963 964 - 965 965 === 3.3.2 Get Device Status === 966 966 849 +Send a LoRaWAN downlink to ask device send Alarm settings. 967 967 968 - Senda LoRaWANdownlinktosk thedevicetosend its status.851 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 969 969 970 - (% style="color:blue"%)**DownlinkPayload:0x2601**853 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 971 971 972 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 973 973 856 +=== 3.3.7 Set Interrupt Mode === 974 974 975 -=== 3.3.3 Set Interrupt Mode === 976 976 977 - 978 978 Feature, Set Interrupt mode for GPIO_EXIT. 979 979 980 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**861 +(% style="color:blue" %)**AT Command: AT+INTMOD** 981 981 982 982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 983 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**984 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((864 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 865 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 985 985 0 986 986 OK 987 987 the mode is 0 =Disable Interrupt 988 988 ))) 989 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((870 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 990 990 Set Transmit Interval 991 991 0. (Disable Interrupt), 992 992 ~1. (Trigger by rising and falling edge) ... ... @@ -993,11 +993,6 @@ 993 993 2. (Trigger by falling edge) 994 994 3. (Trigger by rising edge) 995 995 )))|(% style="width:157px" %)OK 996 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 997 -Set Transmit Interval 998 -trigger by rising edge. 999 -)))|(% style="width:157px" %)OK 1000 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1001 1001 1002 1002 (% style="color:blue" %)**Downlink Command: 0x06** 1003 1003 ... ... @@ -1005,120 +1005,9 @@ 1005 1005 1006 1006 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1007 1007 1008 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1009 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1010 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1011 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 884 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 885 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1012 1012 1013 - 1014 -=== 3.3.4 Set Power Output Duration === 1015 - 1016 - 1017 -Control the output duration 5V . Before each sampling, device will 1018 - 1019 -~1. first enable the power output to external sensor, 1020 - 1021 -2. keep it on as per duration, read sensor value and construct uplink payload 1022 - 1023 -3. final, close the power output. 1024 - 1025 -(% style="color:blue" %)**AT Command: AT+5VT** 1026 - 1027 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1028 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1029 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1030 -500(default) 1031 -OK 1032 -))) 1033 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1034 -Close after a delay of 1000 milliseconds. 1035 -)))|(% style="width:157px" %)OK 1036 - 1037 -(% style="color:blue" %)**Downlink Command: 0x07** 1038 - 1039 -Format: Command Code (0x07) followed by 2 bytes. 1040 - 1041 -The first and second bytes are the time to turn on. 1042 - 1043 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1044 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1045 - 1046 - 1047 -=== 3.3.5 Set Weighing parameters === 1048 - 1049 - 1050 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1051 - 1052 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1053 - 1054 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1055 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1056 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1057 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1058 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1059 - 1060 -(% style="color:blue" %)**Downlink Command: 0x08** 1061 - 1062 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1063 - 1064 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1065 - 1066 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1067 - 1068 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1069 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1070 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1071 - 1072 - 1073 -=== 3.3.6 Set Digital pulse count value === 1074 - 1075 - 1076 -Feature: Set the pulse count value. 1077 - 1078 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1079 - 1080 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1081 - 1082 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1083 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1084 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1085 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1086 - 1087 -(% style="color:blue" %)**Downlink Command: 0x09** 1088 - 1089 -Format: Command Code (0x09) followed by 5 bytes. 1090 - 1091 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1092 - 1093 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1094 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1095 - 1096 - 1097 -=== 3.3.7 Set Workmode === 1098 - 1099 - 1100 -Feature: Switch working mode. 1101 - 1102 -(% style="color:blue" %)**AT Command: AT+MOD** 1103 - 1104 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1105 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1106 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1107 -OK 1108 -))) 1109 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1110 -OK 1111 -Attention:Take effect after ATZ 1112 -))) 1113 - 1114 -(% style="color:blue" %)**Downlink Command: 0x0A** 1115 - 1116 -Format: Command Code (0x0A) followed by 1 bytes. 1117 - 1118 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1119 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1120 - 1121 - 1122 1122 = 4. Battery & Power Consumption = 1123 1123 1124 1124 ... ... @@ -1131,45 +1131,29 @@ 1131 1131 1132 1132 1133 1133 (% class="wikigeneratedid" %) 1134 - **User can change firmware SN50v3-LB to:**899 +User can change firmware SN50v3-LB to: 1135 1135 1136 1136 * Change Frequency band/ region. 1137 1137 * Update with new features. 1138 1138 * Fix bugs. 1139 1139 1140 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**905 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1141 1141 1142 -**Methods to Update Firmware:** 1143 1143 1144 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1145 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 908 +Methods to Update Firmware: 1146 1146 910 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 911 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1147 1147 1148 1148 = 6. FAQ = 1149 1149 1150 1150 == 6.1 Where can i find source code of SN50v3-LB? == 1151 1151 1152 - 1153 1153 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1154 1154 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1155 1155 1156 1156 1157 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1158 1158 1159 - 1160 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1161 - 1162 - 1163 -== 6.3 How to put several sensors to a SN50v3-LB? == 1164 - 1165 - 1166 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1167 - 1168 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1169 - 1170 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1171 - 1172 - 1173 1173 = 7. Order Info = 1174 1174 1175 1175 ... ... @@ -1193,10 +1193,8 @@ 1193 1193 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1194 1194 * (% style="color:red" %)**NH**(%%): No Hole 1195 1195 1196 - 1197 1197 = 8. Packing Info = 1198 1198 1199 - 1200 1200 (% style="color:#037691" %)**Package Includes**: 1201 1201 1202 1202 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1208,10 +1208,8 @@ 1208 1208 * Package Size / pcs : cm 1209 1209 * Weight / pcs : g 1210 1210 1211 - 1212 1212 = 9. Support = 1213 1213 1214 1214 1215 1215 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1216 - 1217 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 962 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content