<
From version < 62.1 >
edited by Saxer Lin
on 2023/08/17 17:37
To version < 43.42 >
edited by Xiaoling
on 2023/05/16 15:05
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -30,7 +30,6 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -142,7 +142,7 @@
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 144  
145 -== 1.9 Hole Option ==
138 +== Hole Option ==
146 146  
147 147  
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -222,44 +222,44 @@
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 223  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -0x01: EU868
229 +*0x01: EU868
237 237  
238 -0x02: US915
231 +*0x02: US915
239 239  
240 -0x03: IN865
233 +*0x03: IN865
241 241  
242 -0x04: AU915
235 +*0x04: AU915
243 243  
244 -0x05: KZ865
237 +*0x05: KZ865
245 245  
246 -0x06: RU864
239 +*0x06: RU864
247 247  
248 -0x07: AS923
241 +*0x07: AS923
249 249  
250 -0x08: AS923-1
243 +*0x08: AS923-1
251 251  
252 -0x09: AS923-2
245 +*0x09: AS923-2
253 253  
254 -0x0a: AS923-3
247 +*0x0a: AS923-3
255 255  
256 -0x0b: CN470
249 +*0x0b: CN470
257 257  
258 -0x0c: EU433
251 +*0x0c: EU433
259 259  
260 -0x0d: KR920
253 +*0x0d: KR920
261 261  
262 -0x0e: MA869
255 +*0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,22 +283,19 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 +1. All modes share the same Payload Explanation from HERE.
290 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 -
299 -3. By default, the device will send an uplink message every 20 minutes.
300 -
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 304  
... ... @@ -305,8 +305,8 @@
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 307  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 -|Value|Bat|(% style="width:191px" %)(((
298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 +|**Value**|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
312 312  ADC(PA4)
... ... @@ -323,12 +323,11 @@
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|Value|BAT|(% style="width:196px" %)(((
319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 +|**Value**|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
334 334  ADC(PA4)
... ... @@ -335,30 +335,27 @@
335 335  )))|(% style="width:189px" %)(((
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by: 1) LIDAR-Lite V3HP
327 +Distance measure by:1) LIDAR-Lite V3HP
339 339  Or 2) Ultrasonic Sensor
340 340  )))|(% style="width:117px" %)Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
344 -
345 345  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 346  
347 347  [[image:image-20230512173758-5.png||height="563" width="712"]]
348 348  
349 -
350 350  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 351  
352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 353  
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 359  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|Value|BAT|(% style="width:183px" %)(((
346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 +|**Value**|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
364 364  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -366,36 +366,34 @@
366 366  ADC(PA4)
367 367  )))|(% style="width:323px" %)(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 2) TF-Luna LiDAR
355 +Or 
356 +2) TF-Luna LiDAR
370 370  )))|(% style="width:188px" %)Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
374 -
375 375  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378 378  
379 379  [[image:image-20230512180609-7.png||height="555" width="802"]]
380 380  
381 -
382 382  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383 383  
384 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
385 385  
386 -[[image:image-20230610170047-1.png||height="452" width="799"]]
371 +[[image:image-20230513105207-4.png||height="469" width="802"]]
387 387  
388 388  
389 389  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390 390  
391 -
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 394  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 395  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 -|Value|(% style="width:68px" %)(((
381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 +|**Value**|(% style="width:68px" %)(((
399 399  ADC1(PA4)
400 400  )))|(% style="width:75px" %)(((
401 401  ADC2(PA5)
... ... @@ -418,8 +418,8 @@
418 418  This mode has total 11 bytes. As shown below:
419 419  
420 420  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 -|Value|BAT|(% style="width:186px" %)(((
405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 +|**Value**|BAT|(% style="width:186px" %)(((
423 423  Temperature1(DS18B20)(PC13)
424 424  )))|(% style="width:82px" %)(((
425 425  ADC(PA4)
... ... @@ -430,29 +430,24 @@
430 430  
431 431  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432 432  
433 -
434 434  [[image:image-20230513134006-1.png||height="559" width="736"]]
435 435  
436 436  
437 437  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 438  
439 -
440 440  [[image:image-20230512164658-2.png||height="532" width="729"]]
441 441  
442 442  Each HX711 need to be calibrated before used. User need to do below two steps:
443 443  
444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 446  1. (((
447 447  Weight has 4 bytes, the unit is g.
448 -
449 -
450 -
451 451  )))
452 452  
453 453  For example:
454 454  
455 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
434 +**AT+GETSENSORVALUE =0**
456 456  
457 457  Response:  Weight is 401 g
458 458  
... ... @@ -462,12 +462,14 @@
462 462  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
463 463  **Size(bytes)**
464 464  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 -|Value|BAT|(% style="width:193px" %)(((
466 -Temperature(DS18B20)(PC13)
444 +|**Value**|BAT|(% style="width:193px" %)(((
445 +Temperature(DS18B20)
446 +(PC13)
467 467  )))|(% style="width:85px" %)(((
468 468  ADC(PA4)
469 469  )))|(% style="width:186px" %)(((
470 -Digital in(PB15) & Digital Interrupt(PA8)
450 +Digital in(PB15) &
451 +Digital Interrupt(PA8)
471 471  )))|(% style="width:100px" %)Weight
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -475,7 +475,6 @@
475 475  
476 476  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 477  
478 -
479 479  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480 480  
481 481  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -482,12 +482,11 @@
482 482  
483 483  [[image:image-20230512181814-9.png||height="543" width="697"]]
484 484  
465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
485 485  
486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 -
488 488  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 -|Value|BAT|(% style="width:256px" %)(((
468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 +|**Value**|BAT|(% style="width:256px" %)(((
491 491  Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:108px" %)(((
493 493  ADC(PA4)
... ... @@ -502,12 +502,11 @@
502 502  
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
505 -
506 506  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 507  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 508  **Size(bytes)**
509 509  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 -|Value|BAT|(% style="width:188px" %)(((
488 +|**Value**|BAT|(% style="width:188px" %)(((
511 511  Temperature(DS18B20)
512 512  (PC13)
513 513  )))|(% style="width:83px" %)(((
... ... @@ -518,15 +518,13 @@
518 518  
519 519  [[image:image-20230513111203-7.png||height="324" width="975"]]
520 520  
521 -
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 -
525 525  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 526  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 -|Value|BAT|(% style="width:207px" %)(((
504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 +|**Value**|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
532 532  )))|(% style="width:94px" %)(((
... ... @@ -544,23 +544,22 @@
544 544  
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 -
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 549  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 -|Value|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 +|**Value**|BAT|(((
528 +Temperature1(DS18B20)
529 +(PC13)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
531 +Temperature2(DS18B20)
532 +(PB9)
558 558  )))|(((
559 559  Digital Interrupt
560 560  (PB15)
561 561  )))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
537 +Temperature3(DS18B20)
538 +(PB8)
564 564  )))|(% style="width:78px" %)(((
565 565  Count1(PA8)
566 566  )))|(% style="width:78px" %)(((
... ... @@ -571,11 +571,11 @@
571 571  
572 572  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
549 +(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
551 +(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
553 +(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
579 579  
580 580  
581 581  (% style="color:blue" %)**AT+SETCNT=aa,bb** 
... ... @@ -585,9 +585,9 @@
585 585  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
563 +
588 588  === 2.3.3  ​Decode payload ===
589 589  
590 -
591 591  While using TTN V3 network, you can add the payload format to decode the payload.
592 592  
593 593  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -594,14 +594,13 @@
594 594  
595 595  The payload decoder function for TTN V3 are here:
596 596  
597 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
572 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 598  
599 599  
600 600  ==== 2.3.3.1 Battery Info ====
601 601  
577 +Check the battery voltage for SN50v3.
602 602  
603 -Check the battery voltage for SN50v3-LB.
604 -
605 605  Ex1: 0x0B45 = 2885mV
606 606  
607 607  Ex2: 0x0B49 = 2889mV
... ... @@ -609,16 +609,14 @@
609 609  
610 610  ==== 2.3.3.2  Temperature (DS18B20) ====
611 611  
612 -
613 613  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
614 614  
615 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
588 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
616 616  
617 617  (% style="color:blue" %)**Connection:**
618 618  
619 619  [[image:image-20230512180718-8.png||height="538" width="647"]]
620 620  
621 -
622 622  (% style="color:blue" %)**Example**:
623 623  
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -630,7 +630,6 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
633 -
634 634  The digital input for pin PB15,
635 635  
636 636  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -640,38 +640,28 @@
640 640  (((
641 641  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642 642  
643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 -
645 -
614 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
646 646  )))
647 647  
648 648  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649 649  
619 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
650 650  
651 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
621 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
652 652  
653 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654 -
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
625 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
657 657  
658 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 659  
660 -
661 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
662 -
663 -[[image:image-20230811113449-1.png||height="370" width="608"]]
664 -
665 665  ==== 2.3.3.5 Digital Interrupt ====
666 666  
630 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
667 667  
668 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
632 +(% style="color:blue" %)**~ Interrupt connection method:**
669 669  
670 -(% style="color:blue" %)** Interrupt connection method:**
671 -
672 672  [[image:image-20230513105351-5.png||height="147" width="485"]]
673 673  
674 -
675 675  (% style="color:blue" %)**Example to use with door sensor :**
676 676  
677 677  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -678,23 +678,22 @@
678 678  
679 679  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
680 680  
681 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
642 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
682 682  
644 +(% style="color:blue" %)**~ Below is the installation example:**
683 683  
684 -(% style="color:blue" %)**Below is the installation example:**
646 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
685 685  
686 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
687 -
688 688  * (((
689 -One pin to SN50v3-LB's PA8 pin
649 +One pin to SN50_v3's PA8 pin
690 690  )))
691 691  * (((
692 -The other pin to SN50v3-LB's VDD pin
652 +The other pin to SN50_v3's VDD pin
693 693  )))
694 694  
695 695  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
696 696  
697 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
657 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
698 698  
699 699  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
700 700  
... ... @@ -706,32 +706,29 @@
706 706  
707 707  The command is:
708 708  
709 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
669 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710 710  
711 711  Below shows some screen captures in TTN V3:
712 712  
713 713  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
714 714  
675 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 715  
716 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717 -
718 718  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
719 719  
720 720  
721 721  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
722 722  
723 -
724 724  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
725 725  
726 726  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
727 727  
728 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
686 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
729 729  
730 -
731 731  Below is the connection to SHT20/ SHT31. The connection is as below:
732 732  
733 -[[image:image-20230610170152-2.png||height="501" width="846"]]
734 734  
691 +[[image:image-20230513103633-3.png||height="448" width="716"]]
735 735  
736 736  The device will be able to get the I2C sensor data now and upload to IoT Server.
737 737  
... ... @@ -750,26 +750,23 @@
750 750  
751 751  ==== 2.3.3.7  ​Distance Reading ====
752 752  
753 -
754 754  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
755 755  
756 756  
757 757  ==== 2.3.3.8 Ultrasonic Sensor ====
758 758  
759 -
760 760  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
761 761  
762 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
717 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
763 763  
764 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
719 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
765 765  
766 766  The picture below shows the connection:
767 767  
768 768  [[image:image-20230512173903-6.png||height="596" width="715"]]
769 769  
725 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
770 770  
771 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
772 -
773 773  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
774 774  
775 775  **Example:**
... ... @@ -777,17 +777,16 @@
777 777  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
778 778  
779 779  
734 +
780 780  ==== 2.3.3.9  Battery Output - BAT pin ====
781 781  
737 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
782 782  
783 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
784 784  
785 -
786 786  ==== 2.3.3.10  +5V Output ====
787 787  
742 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
788 788  
789 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
790 -
791 791  The 5V output time can be controlled by AT Command.
792 792  
793 793  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -794,23 +794,21 @@
794 794  
795 795  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
796 796  
797 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
750 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
798 798  
799 799  
753 +
800 800  ==== 2.3.3.11  BH1750 Illumination Sensor ====
801 801  
802 -
803 803  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
804 804  
805 805  [[image:image-20230512172447-4.png||height="416" width="712"]]
806 806  
807 -
808 808  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
809 809  
810 810  
811 811  ==== 2.3.3.12  Working MOD ====
812 812  
813 -
814 814  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
815 815  
816 816  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -839,6 +839,7 @@
839 839  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
840 840  
841 841  
793 +
842 842  == 2.5 Frequency Plans ==
843 843  
844 844  
... ... @@ -858,8 +858,6 @@
858 858  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
859 859  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
860 860  
861 -
862 -
863 863  == 3.2 General Commands ==
864 864  
865 865  
... ... @@ -876,18 +876,17 @@
876 876  == 3.3 Commands special design for SN50v3-LB ==
877 877  
878 878  
879 -These commands only valid for SN50v3-LB, as below:
829 +These commands only valid for S31x-LB, as below:
880 880  
881 881  
882 882  === 3.3.1 Set Transmit Interval Time ===
883 883  
884 -
885 885  Feature: Change LoRaWAN End Node Transmit Interval.
886 886  
887 887  (% style="color:blue" %)**AT Command: AT+TDC**
888 888  
889 889  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
890 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
839 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
891 891  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
892 892  30000
893 893  OK
... ... @@ -911,23 +911,21 @@
911 911  
912 912  === 3.3.2 Get Device Status ===
913 913  
914 -
915 915  Send a LoRaWAN downlink to ask the device to send its status.
916 916  
917 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
865 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
918 918  
919 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
867 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
920 920  
921 921  
922 922  === 3.3.3 Set Interrupt Mode ===
923 923  
924 -
925 925  Feature, Set Interrupt mode for GPIO_EXIT.
926 926  
927 927  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
928 928  
929 929  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
930 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
877 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
931 931  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
932 932  0
933 933  OK
... ... @@ -942,6 +942,7 @@
942 942  )))|(% style="width:157px" %)OK
943 943  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
944 944  Set Transmit Interval
892 +
945 945  trigger by rising edge.
946 946  )))|(% style="width:157px" %)OK
947 947  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -961,7 +961,6 @@
961 961  
962 962  === 3.3.4 Set Power Output Duration ===
963 963  
964 -
965 965  Control the output duration 5V . Before each sampling, device will
966 966  
967 967  ~1. first enable the power output to external sensor,
... ... @@ -973,7 +973,7 @@
973 973  (% style="color:blue" %)**AT Command: AT+5VT**
974 974  
975 975  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
976 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
977 977  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
978 978  500(default)
979 979  OK
... ... @@ -995,13 +995,12 @@
995 995  
996 996  === 3.3.5 Set Weighing parameters ===
997 997  
998 -
999 999  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1000 1000  
1001 1001  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1002 1002  
1003 1003  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
950 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1005 1005  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1006 1006  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1007 1007  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1022,7 +1022,6 @@
1022 1022  
1023 1023  === 3.3.6 Set Digital pulse count value ===
1024 1024  
1025 -
1026 1026  Feature: Set the pulse count value.
1027 1027  
1028 1028  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1030,7 +1030,7 @@
1030 1030  (% style="color:blue" %)**AT Command: AT+SETCNT**
1031 1031  
1032 1032  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
978 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1034 1034  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1035 1035  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1036 1036  
... ... @@ -1047,13 +1047,12 @@
1047 1047  
1048 1048  === 3.3.7 Set Workmode ===
1049 1049  
1050 -
1051 1051  Feature: Switch working mode.
1052 1052  
1053 1053  (% style="color:blue" %)**AT Command: AT+MOD**
1054 1054  
1055 1055  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1057 1057  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1058 1058  OK
1059 1059  )))
... ... @@ -1083,47 +1083,27 @@
1083 1083  
1084 1084  
1085 1085  (% class="wikigeneratedid" %)
1086 -**User can change firmware SN50v3-LB to:**
1030 +User can change firmware SN50v3-LB to:
1087 1087  
1088 1088  * Change Frequency band/ region.
1089 1089  * Update with new features.
1090 1090  * Fix bugs.
1091 1091  
1092 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1036 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1093 1093  
1094 -**Methods to Update Firmware:**
1095 1095  
1096 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1097 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1039 +Methods to Update Firmware:
1098 1098  
1041 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1042 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1099 1099  
1100 -
1101 1101  = 6. FAQ =
1102 1102  
1103 1103  == 6.1 Where can i find source code of SN50v3-LB? ==
1104 1104  
1105 -
1106 1106  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1107 1107  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1108 1108  
1109 -
1110 -
1111 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1112 -
1113 -
1114 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1115 -
1116 -
1117 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1118 -
1119 -
1120 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1121 -
1122 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1123 -
1124 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1125 -
1126 -
1127 1127  = 7. Order Info =
1128 1128  
1129 1129  
... ... @@ -1147,11 +1147,8 @@
1147 1147  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1148 1148  * (% style="color:red" %)**NH**(%%): No Hole
1149 1149  
1150 -
1151 -
1152 1152  = 8. ​Packing Info =
1153 1153  
1154 -
1155 1155  (% style="color:#037691" %)**Package Includes**:
1156 1156  
1157 1157  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1163,8 +1163,6 @@
1163 1163  * Package Size / pcs : cm
1164 1164  * Weight / pcs : g
1165 1165  
1166 -
1167 -
1168 1168  = 9. Support =
1169 1169  
1170 1170  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0