<
From version < 62.1 >
edited by Saxer Lin
on 2023/08/17 17:37
To version < 35.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111255-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,11 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 -
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 51  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,11 +80,8 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -142,9 +142,8 @@
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 144  
145 -== 1.9 Hole Option ==
138 +== Hole Option ==
146 146  
147 -
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -222,44 +222,44 @@
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 223  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -0x01: EU868
228 +*0x01: EU868
237 237  
238 -0x02: US915
230 +*0x02: US915
239 239  
240 -0x03: IN865
232 +*0x03: IN865
241 241  
242 -0x04: AU915
234 +*0x04: AU915
243 243  
244 -0x05: KZ865
236 +*0x05: KZ865
245 245  
246 -0x06: RU864
238 +*0x06: RU864
247 247  
248 -0x07: AS923
240 +*0x07: AS923
249 249  
250 -0x08: AS923-1
242 +*0x08: AS923-1
251 251  
252 -0x09: AS923-2
244 +*0x09: AS923-2
253 253  
254 -0x0a: AS923-3
246 +*0x0a: AS923-3
255 255  
256 -0x0b: CN470
248 +*0x0b: CN470
257 257  
258 -0x0c: EU433
250 +*0x0c: EU433
259 259  
260 -0x0d: KR920
252 +*0x0d: KR920
261 261  
262 -0x0e: MA869
254 +*0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,199 +283,186 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 -
299 -3. By default, the device will send an uplink message every 20 minutes.
300 -
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 -
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 -|Value|Bat|(% style="width:191px" %)(((
310 -Temperature(DS18B20)(PC13)
311 -)))|(% style="width:78px" %)(((
312 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
313 313  )))|(% style="width:216px" %)(((
314 -Digital in(PB15)&Digital Interrupt(PA8)
315 -)))|(% style="width:308px" %)(((
316 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
317 -)))|(% style="width:154px" %)(((
318 -Humidity(SHT20 or SHT31)
319 -)))
305 +Digital in & Digital Interrupt
320 320  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
321 321  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322 322  
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|Value|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)(PC13)
333 -)))|(% style="width:87px" %)(((
334 -ADC(PA4)
335 -)))|(% style="width:189px" %)(((
336 -Digital in(PB15) & Digital Interrupt(PA8)
337 -)))|(% style="width:208px" %)(((
338 -Distance measure by: 1) LIDAR-Lite V3HP
339 -Or 2) Ultrasonic Sensor
340 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
329 +**Connection of LIDAR-Lite V3HP:**
344 344  
345 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 -
347 347  [[image:image-20230512173758-5.png||height="563" width="712"]]
348 348  
333 +**Connection to Ultrasonic Sensor:**
349 349  
350 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 -
352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 -
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|Value|BAT|(% style="width:183px" %)(((
362 -Temperature(DS18B20)(PC13)
363 -)))|(% style="width:173px" %)(((
364 -Digital in(PB15) & Digital Interrupt(PA8)
365 -)))|(% style="width:84px" %)(((
366 -ADC(PA4)
367 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 2) TF-Luna LiDAR
370 -)))|(% style="width:188px" %)Distance signal  strength
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
374 -
375 375  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
378 378  
379 379  [[image:image-20230512180609-7.png||height="555" width="802"]]
380 380  
381 -
382 382  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383 383  
384 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
385 385  
386 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
387 387  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
388 388  
364 +
389 389  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390 390  
391 -
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 -|Value|(% style="width:68px" %)(((
399 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
400 400  )))|(% style="width:75px" %)(((
401 -ADC2(PA5)
402 -)))|(((
403 -ADC3(PA8)
404 -)))|(((
405 -Digital Interrupt(PB15)
406 -)))|(% style="width:304px" %)(((
407 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
408 -)))|(% style="width:163px" %)(((
409 -Humidity(SHT20 or SHT31)
410 -)))|(% style="width:53px" %)Bat
377 +ADC2
411 411  
412 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
413 413  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
414 414  
386 +
415 415  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416 416  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
417 417  
418 418  This mode has total 11 bytes. As shown below:
419 419  
420 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 -|Value|BAT|(% style="width:186px" %)(((
423 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
424 424  )))|(% style="width:82px" %)(((
425 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
426 426  )))|(% style="width:210px" %)(((
427 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
428 428  )))|(% style="width:191px" %)Temperature2(DS18B20)
429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
430 430  
431 431  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432 432  
433 433  
434 -[[image:image-20230513134006-1.png||height="559" width="736"]]
435 -
436 -
437 437  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 438  
439 -
440 440  [[image:image-20230512164658-2.png||height="532" width="729"]]
441 441  
442 442  Each HX711 need to be calibrated before used. User need to do below two steps:
443 443  
444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 446  1. (((
447 447  Weight has 4 bytes, the unit is g.
448 -
449 -
450 -
451 451  )))
452 452  
453 453  For example:
454 454  
455 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
456 456  
457 457  Response:  Weight is 401 g
458 458  
459 459  Check the response of this command and adjust the value to match the real value for thing.
460 460  
461 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
463 463  **Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 -|Value|BAT|(% style="width:193px" %)(((
466 -Temperature(DS18B20)(PC13)
467 -)))|(% style="width:85px" %)(((
468 -ADC(PA4)
469 -)))|(% style="width:186px" %)(((
470 -Digital in(PB15) & Digital Interrupt(PA8)
471 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
472 472  
440 +(PC13)
441 +
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 +
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 +
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
452 +
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 476  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 477  
478 -
479 479  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480 480  
481 481  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -482,112 +482,86 @@
482 482  
483 483  [[image:image-20230512181814-9.png||height="543" width="697"]]
484 484  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
485 485  
486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
487 487  
488 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 -|Value|BAT|(% style="width:256px" %)(((
491 -Temperature(DS18B20)(PC13)
492 -)))|(% style="width:108px" %)(((
493 -ADC(PA4)
494 -)))|(% style="width:126px" %)(((
495 -Digital in(PB15)
496 -)))|(% style="width:145px" %)(((
497 -Count(PA8)
498 -)))
499 -
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 501  
502 502  
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
505 505  
506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 -|Value|BAT|(% style="width:188px" %)(((
511 -Temperature(DS18B20)
512 -(PC13)
513 -)))|(% style="width:83px" %)(((
514 -ADC(PA5)
515 -)))|(% style="width:184px" %)(((
516 -Digital Interrupt1(PA8)
517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
518 518  
519 -[[image:image-20230513111203-7.png||height="324" width="975"]]
520 -
521 -
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 -
525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 -|Value|BAT|(% style="width:207px" %)(((
530 -Temperature(DS18B20)
531 -(PC13)
532 -)))|(% style="width:94px" %)(((
533 -ADC1(PA4)
534 -)))|(% style="width:198px" %)(((
535 -Digital Interrupt(PB15)
536 -)))|(% style="width:84px" %)(((
537 -ADC2(PA5)
538 -)))|(% style="width:82px" %)(((
539 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
540 540  )))
541 541  
542 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
543 543  
544 544  
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 -
548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 -|Value|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
512 +Temperature2(PA9)
558 558  )))|(((
559 -Digital Interrupt
560 -(PB15)
561 -)))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
564 -)))|(% style="width:78px" %)(((
565 -Count1(PA8)
566 -)))|(% style="width:78px" %)(((
567 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
568 568  )))
569 569  
570 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
571 571  
572 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 579  
534 +**AT+SETCNT=aa,bb** 
580 580  
581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 582  
583 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
588 588  === 2.3.3  ​Decode payload ===
589 589  
590 -
591 591  While using TTN V3 network, you can add the payload format to decode the payload.
592 592  
593 593  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -594,14 +594,13 @@
594 594  
595 595  The payload decoder function for TTN V3 are here:
596 596  
597 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 598  
599 599  
600 600  ==== 2.3.3.1 Battery Info ====
601 601  
555 +Check the battery voltage for SN50v3.
602 602  
603 -Check the battery voltage for SN50v3-LB.
604 -
605 605  Ex1: 0x0B45 = 2885mV
606 606  
607 607  Ex2: 0x0B49 = 2889mV
... ... @@ -609,18 +609,16 @@
609 609  
610 610  ==== 2.3.3.2  Temperature (DS18B20) ====
611 611  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
612 612  
613 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
614 614  
615 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
616 616  
617 -(% style="color:blue" %)**Connection:**
618 -
619 619  [[image:image-20230512180718-8.png||height="538" width="647"]]
620 620  
572 +**Example**:
621 621  
622 -(% style="color:blue" %)**Example**:
623 -
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625 625  
626 626  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -630,7 +630,6 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
633 -
634 634  The digital input for pin PB15,
635 635  
636 636  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -638,65 +638,51 @@
638 638  
639 639  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 640  (((
641 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642 -
643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 -
645 -
590 +Note:The maximum voltage input supports 3.6V.
646 646  )))
647 647  
593 +(% class="wikigeneratedid" %)
648 648  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649 649  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
650 650  
651 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
652 -
653 653  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
657 657  
658 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 -
660 -
661 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
662 -
663 -[[image:image-20230811113449-1.png||height="370" width="608"]]
664 -
665 665  ==== 2.3.3.5 Digital Interrupt ====
666 666  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
667 667  
668 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
669 669  
670 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
671 671  
672 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
673 673  
674 -
675 -(% style="color:blue" %)**Example to use with door sensor :**
676 -
677 677  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
678 678  
679 679  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
680 680  
681 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
682 682  
619 +**~ Below is the installation example:**
683 683  
684 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
685 685  
686 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
687 -
688 688  * (((
689 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
690 690  )))
691 691  * (((
692 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
693 693  )))
694 694  
695 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
696 696  
697 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
698 698  
699 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
700 700  
701 701  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
702 702  
... ... @@ -706,33 +706,29 @@
706 706  
707 707  The command is:
708 708  
709 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710 710  
711 711  Below shows some screen captures in TTN V3:
712 712  
713 713  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
714 714  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 715  
716 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717 -
718 718  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
719 719  
720 720  
721 721  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
722 722  
723 -
724 724  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
725 725  
726 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
727 727  
728 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
729 729  
730 -
731 731  Below is the connection to SHT20/ SHT31. The connection is as below:
732 732  
733 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
734 734  
735 -
736 736  The device will be able to get the I2C sensor data now and upload to IoT Server.
737 737  
738 738  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -750,26 +750,20 @@
750 750  
751 751  ==== 2.3.3.7  ​Distance Reading ====
752 752  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
753 753  
754 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
755 755  
756 -
757 757  ==== 2.3.3.8 Ultrasonic Sensor ====
758 758  
759 -
760 760  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
761 761  
762 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
763 763  
764 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
765 -
766 766  The picture below shows the connection:
767 767  
768 -[[image:image-20230512173903-6.png||height="596" width="715"]]
769 769  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
770 770  
771 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
772 -
773 773  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
774 774  
775 775  **Example:**
... ... @@ -776,41 +776,50 @@
776 776  
777 777  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
778 778  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
779 779  
780 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
781 781  
708 +You can see the serial output in ULT mode as below:
782 782  
783 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
784 784  
712 +**In TTN V3 server:**
785 785  
786 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
787 787  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
788 788  
789 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
790 790  
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
721 +
722 +
723 +==== 2.3.3.10  +5V Output ====
724 +
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
726 +
791 791  The 5V output time can be controlled by AT Command.
792 792  
793 -(% style="color:blue" %)**AT+5VT=1000**
729 +**AT+5VT=1000**
794 794  
795 795  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
796 796  
797 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
798 798  
799 799  
736 +
800 800  ==== 2.3.3.11  BH1750 Illumination Sensor ====
801 801  
802 -
803 803  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
804 804  
805 -[[image:image-20230512172447-4.png||height="416" width="712"]]
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
806 806  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
807 807  
808 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
809 809  
810 -
811 811  ==== 2.3.3.12  Working MOD ====
812 812  
813 -
814 814  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
815 815  
816 816  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -823,12 +823,7 @@
823 823  * 3: MOD4
824 824  * 4: MOD5
825 825  * 5: MOD6
826 -* 6: MOD7
827 -* 7: MOD8
828 -* 8: MOD9
829 829  
830 -
831 -
832 832  == 2.4 Payload Decoder file ==
833 833  
834 834  
... ... @@ -836,9 +836,10 @@
836 836  
837 837  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
838 838  
839 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
840 840  
841 841  
771 +
842 842  == 2.5 Frequency Plans ==
843 843  
844 844  
... ... @@ -858,8 +858,6 @@
858 858  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
859 859  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
860 860  
861 -
862 -
863 863  == 3.2 General Commands ==
864 864  
865 865  
... ... @@ -876,7 +876,7 @@
876 876  == 3.3 Commands special design for SN50v3-LB ==
877 877  
878 878  
879 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
880 880  
881 881  
882 882  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -887,7 +887,7 @@
887 887  (% style="color:blue" %)**AT Command: AT+TDC**
888 888  
889 889  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
890 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
891 891  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
892 892  30000
893 893  OK
... ... @@ -907,33 +907,30 @@
907 907  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
908 908  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
909 909  
910 -
911 -
912 912  === 3.3.2 Get Device Status ===
913 913  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
914 914  
915 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
916 916  
917 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
918 918  
919 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
920 920  
847 +=== 3.3.7 Set Interrupt Mode ===
921 921  
922 -=== 3.3.3 Set Interrupt Mode ===
923 923  
924 -
925 925  Feature, Set Interrupt mode for GPIO_EXIT.
926 926  
927 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
928 928  
929 929  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
930 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
931 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
932 932  0
933 933  OK
934 934  the mode is 0 =Disable Interrupt
935 935  )))
936 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
937 937  Set Transmit Interval
938 938  0. (Disable Interrupt),
939 939  ~1. (Trigger by rising and falling edge)
... ... @@ -940,11 +940,6 @@
940 940  2. (Trigger by falling edge)
941 941  3. (Trigger by rising edge)
942 942  )))|(% style="width:157px" %)OK
943 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
944 -Set Transmit Interval
945 -trigger by rising edge.
946 -)))|(% style="width:157px" %)OK
947 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
948 948  
949 949  (% style="color:blue" %)**Downlink Command: 0x06**
950 950  
... ... @@ -952,125 +952,9 @@
952 952  
953 953  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
954 954  
955 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
956 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
957 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
958 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
959 959  
960 -
961 -
962 -=== 3.3.4 Set Power Output Duration ===
963 -
964 -
965 -Control the output duration 5V . Before each sampling, device will
966 -
967 -~1. first enable the power output to external sensor,
968 -
969 -2. keep it on as per duration, read sensor value and construct uplink payload
970 -
971 -3. final, close the power output.
972 -
973 -(% style="color:blue" %)**AT Command: AT+5VT**
974 -
975 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
976 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
977 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
978 -500(default)
979 -OK
980 -)))
981 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
982 -Close after a delay of 1000 milliseconds.
983 -)))|(% style="width:157px" %)OK
984 -
985 -(% style="color:blue" %)**Downlink Command: 0x07**
986 -
987 -Format: Command Code (0x07) followed by 2 bytes.
988 -
989 -The first and second bytes are the time to turn on.
990 -
991 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
992 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
993 -
994 -
995 -
996 -=== 3.3.5 Set Weighing parameters ===
997 -
998 -
999 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1000 -
1001 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1002 -
1003 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1005 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1006 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1007 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1008 -
1009 -(% style="color:blue" %)**Downlink Command: 0x08**
1010 -
1011 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1012 -
1013 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1014 -
1015 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1016 -
1017 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1018 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1019 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1020 -
1021 -
1022 -
1023 -=== 3.3.6 Set Digital pulse count value ===
1024 -
1025 -
1026 -Feature: Set the pulse count value.
1027 -
1028 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1029 -
1030 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1031 -
1032 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1034 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1035 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1036 -
1037 -(% style="color:blue" %)**Downlink Command: 0x09**
1038 -
1039 -Format: Command Code (0x09) followed by 5 bytes.
1040 -
1041 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1042 -
1043 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1044 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 -
1046 -
1047 -
1048 -=== 3.3.7 Set Workmode ===
1049 -
1050 -
1051 -Feature: Switch working mode.
1052 -
1053 -(% style="color:blue" %)**AT Command: AT+MOD**
1054 -
1055 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1057 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1058 -OK
1059 -)))
1060 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1061 -OK
1062 -Attention:Take effect after ATZ
1063 -)))
1064 -
1065 -(% style="color:blue" %)**Downlink Command: 0x0A**
1066 -
1067 -Format: Command Code (0x0A) followed by 1 bytes.
1068 -
1069 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1070 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1071 -
1072 -
1073 -
1074 1074  = 4. Battery & Power Consumption =
1075 1075  
1076 1076  
... ... @@ -1083,47 +1083,28 @@
1083 1083  
1084 1084  
1085 1085  (% class="wikigeneratedid" %)
1086 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1087 1087  
1088 1088  * Change Frequency band/ region.
1089 1089  * Update with new features.
1090 1090  * Fix bugs.
1091 1091  
1092 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1093 1093  
1094 -**Methods to Update Firmware:**
1095 1095  
1096 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1097 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
899 +Methods to Update Firmware:
1098 1098  
901 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1099 1099  
1100 -
1101 1101  = 6. FAQ =
1102 1102  
1103 1103  == 6.1 Where can i find source code of SN50v3-LB? ==
1104 1104  
1105 -
1106 1106  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1107 1107  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1108 1108  
1109 1109  
1110 -
1111 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1112 -
1113 -
1114 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1115 -
1116 -
1117 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1118 -
1119 -
1120 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1121 -
1122 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1123 -
1124 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1125 -
1126 -
1127 1127  = 7. Order Info =
1128 1128  
1129 1129  
... ... @@ -1147,11 +1147,8 @@
1147 1147  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1148 1148  * (% style="color:red" %)**NH**(%%): No Hole
1149 1149  
1150 -
1151 -
1152 1152  = 8. ​Packing Info =
1153 1153  
1154 -
1155 1155  (% style="color:#037691" %)**Package Includes**:
1156 1156  
1157 1157  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1163,11 +1163,8 @@
1163 1163  * Package Size / pcs : cm
1164 1164  * Weight / pcs : g
1165 1165  
1166 -
1167 -
1168 1168  = 9. Support =
1169 1169  
1170 1170  
1171 1171  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1172 -
1173 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0