Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230511203450-2.png
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -42,8 +42,11 @@ 42 42 * Downlink to change configure 43 43 * 8500mAh Battery for long term use 44 44 44 + 45 + 45 45 == 1.3 Specification == 46 46 48 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,8 +78,11 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 83 + 84 + 81 81 == 1.4 Sleep mode and working mode == 82 82 87 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,39 +122,22 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 126 -|=(% style="width: 102px;background-color:#D9E2F3;color:#0070C0" %)Model|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)Photo|=(% style="width: 218px;background-color:#D9E2F3;color:#0070C0" %)Probe Info 127 -|(% style="width:102px" %)S31-LB|(% style="width:190px" %)[[image:S31.jpg]]|(% style="width:297px" %)((( 128 -1 x SHT31 Probe 132 +[[image:image-20230513102034-2.png]] 129 129 130 -Cable Length : 2 meters 131 131 132 - 133 -))) 134 -|(% style="width:102px" %)S31B-LB|(% style="width:190px" %)[[image:S31B.jpg]]|(% style="width:297px" %)((( 135 -1 x SHT31 Probe 136 - 137 -Installed in device. 138 -))) 139 - 140 -(% style="display:none" %) 141 - 142 - 143 - 144 144 == 1.8 Mechanical == 145 145 146 146 147 147 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 148 148 149 - 150 150 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 151 151 152 - 153 153 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 154 154 155 155 156 156 == Hole Option == 157 157 147 + 158 158 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 159 159 160 160 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -162,12 +162,12 @@ 162 162 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 163 163 164 164 165 -= 2. Configure S3 1x-LB to connect to LoRaWAN network =155 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 166 166 167 167 == 2.1 How it works == 168 168 169 169 170 -The S3 1x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 171 171 172 172 173 173 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -178,11 +178,11 @@ 178 178 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 179 179 180 180 181 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S3 1x-LB.171 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 182 182 183 -Each S3 1x-LB is shipped with a sticker with the default device EUI as below:173 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 184 184 185 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 186 186 187 187 188 188 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: ... ... @@ -209,10 +209,10 @@ 209 209 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 210 210 211 211 212 -(% style="color:blue" %)**Step 2:**(%%) Activate onS31x-LB202 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 213 213 214 214 215 -Press the button for 5 seconds to activate the S3 1x-LB.205 +Press the button for 5 seconds to activate the SN50v3-LB. 216 216 217 217 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 218 218 ... ... @@ -224,7 +224,7 @@ 224 224 === 2.3.1 Device Status, FPORT~=5 === 225 225 226 226 227 -Users can use the downlink command(**0x26 01**) to ask S3 1x-LBto send device configure detail, include device configure status. S31x-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 228 228 229 229 The Payload format is as below. 230 230 ... ... @@ -236,11 +236,9 @@ 236 236 237 237 Example parse in TTNv3 238 238 239 -[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]] 240 240 230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 241 241 242 -(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A 243 - 244 244 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 245 245 246 246 (% style="color:#037691" %)**Frequency Band**: ... ... @@ -292,41 +292,352 @@ 292 292 Ex2: 0x0B49 = 2889mV 293 293 294 294 295 -=== 2.3.2 283 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 296 296 297 297 298 -Sen sorDataisuplinkviaFPORT=2286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 299 299 300 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 301 -|=(% style="width: 90px;background-color:#D9E2F3" %)((( 288 +For example: 289 + 290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 + 292 + 293 +(% style="color:red" %) **Important Notice:** 294 + 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 298 + 299 + 300 + 301 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 + 303 + 304 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 + 306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 308 +|**Value**|Bat|(% style="width:191px" %)((( 309 +Temperature(DS18B20)(PC13) 310 +)))|(% style="width:78px" %)((( 311 +ADC(PA4) 312 +)))|(% style="width:216px" %)((( 313 +Digital in(PB15)&Digital Interrupt(PA8) 314 +)))|(% style="width:308px" %)((( 315 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 +)))|(% style="width:154px" %)((( 317 +Humidity(SHT20 or SHT31) 318 +))) 319 + 320 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 + 322 + 323 + 324 +==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 + 326 + 327 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 + 329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|**Value**|BAT|(% style="width:196px" %)((( 332 +Temperature(DS18B20)(PC13) 333 +)))|(% style="width:87px" %)((( 334 +ADC(PA4) 335 +)))|(% style="width:189px" %)((( 336 +Digital in(PB15) & Digital Interrupt(PA8) 337 +)))|(% style="width:208px" %)((( 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 2) Ultrasonic Sensor 340 +)))|(% style="width:117px" %)Reserved 341 + 342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 343 + 344 + 345 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 346 + 347 +[[image:image-20230512173758-5.png||height="563" width="712"]] 348 + 349 + 350 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 351 + 352 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 353 + 354 +[[image:image-20230512173903-6.png||height="596" width="715"]] 355 + 356 + 357 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 358 + 359 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 +|**Value**|BAT|(% style="width:183px" %)((( 362 +Temperature(DS18B20)(PC13) 363 +)))|(% style="width:173px" %)((( 364 +Digital in(PB15) & Digital Interrupt(PA8) 365 +)))|(% style="width:84px" %)((( 366 +ADC(PA4) 367 +)))|(% style="width:323px" %)((( 368 +Distance measure by:1)TF-Mini plus LiDAR 369 +Or 370 +2) TF-Luna LiDAR 371 +)))|(% style="width:188px" %)Distance signal strength 372 + 373 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 374 + 375 + 376 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 377 + 378 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 379 + 380 +[[image:image-20230512180609-7.png||height="555" width="802"]] 381 + 382 + 383 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 384 + 385 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 386 + 387 +[[image:image-20230513105207-4.png||height="469" width="802"]] 388 + 389 + 390 +==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 391 + 392 + 393 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C 394 + 395 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 396 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 302 302 **Size(bytes)** 303 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2 304 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)((( 305 -[[Battery>>||anchor="HBattery:"]] 306 -)))|(% style="width:130px" %)((( 307 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]] 308 -)))|(% style="width:91px" %)((( 309 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]] 310 -)))|(% style="width:103px" %)((( 311 -[[Temperature>>||anchor="HTemperature:"]] 312 -)))|(% style="width:80px" %)((( 313 -[[Humidity>>||anchor="HHumidity:"]] 398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 399 +|**Value**|(% style="width:68px" %)((( 400 +ADC1(PA4) 401 +)))|(% style="width:75px" %)((( 402 +ADC2(PA5) 403 +)))|((( 404 +ADC3(PA8) 405 +)))|((( 406 +Digital Interrupt(PB15) 407 +)))|(% style="width:304px" %)((( 408 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 409 +)))|(% style="width:163px" %)((( 410 +Humidity(SHT20 or SHT31) 411 +)))|(% style="width:53px" %)Bat 412 + 413 +[[image:image-20230513110214-6.png]] 414 + 415 + 416 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 417 + 418 + 419 +This mode has total 11 bytes. As shown below: 420 + 421 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 422 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 423 +|**Value**|BAT|(% style="width:186px" %)((( 424 +Temperature1(DS18B20)(PC13) 425 +)))|(% style="width:82px" %)((( 426 +ADC(PA4) 427 +)))|(% style="width:210px" %)((( 428 +Digital in(PB15) & Digital Interrupt(PA8) 429 +)))|(% style="width:191px" %)Temperature2(DS18B20) 430 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 431 + 432 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 433 + 434 +[[image:image-20230513134006-1.png||height="559" width="736"]] 435 + 436 + 437 + 438 +==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 439 + 440 + 441 +[[image:image-20230512164658-2.png||height="532" width="729"]] 442 + 443 +Each HX711 need to be calibrated before used. User need to do below two steps: 444 + 445 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 446 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 447 +1. ((( 448 +Weight has 4 bytes, the unit is g. 449 + 450 + 451 + 314 314 ))) 315 315 316 - ==== (% style="color:#4472c4"%)**Battery**(%%) ====454 +For example: 317 317 318 -S ensor BatteryLevel.456 +**AT+GETSENSORVALUE =0** 319 319 458 +Response: Weight is 401 g 459 + 460 +Check the response of this command and adjust the value to match the real value for thing. 461 + 462 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 463 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 464 +**Size(bytes)** 465 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 466 +|**Value**|BAT|(% style="width:193px" %)((( 467 +Temperature(DS18B20) 468 +(PC13) 469 +)))|(% style="width:85px" %)((( 470 +ADC(PA4) 471 +)))|(% style="width:186px" %)((( 472 +Digital in(PB15) & 473 +Digital Interrupt(PA8) 474 +)))|(% style="width:100px" %)Weight 475 + 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 477 + 478 + 479 + 480 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 481 + 482 + 483 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 484 + 485 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 486 + 487 +[[image:image-20230512181814-9.png||height="543" width="697"]] 488 + 489 + 490 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 491 + 492 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 493 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 494 +|**Value**|BAT|(% style="width:256px" %)((( 495 +Temperature(DS18B20)(PC13) 496 +)))|(% style="width:108px" %)((( 497 +ADC(PA4) 498 +)))|(% style="width:126px" %)((( 499 +Digital in(PB15) 500 +)))|(% style="width:145px" %)((( 501 +Count(PA8) 502 +))) 503 + 504 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 505 + 506 + 507 + 508 +==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 509 + 510 + 511 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 512 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 513 +**Size(bytes)** 514 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 515 +|**Value**|BAT|(% style="width:188px" %)((( 516 +Temperature(DS18B20) 517 +(PC13) 518 +)))|(% style="width:83px" %)((( 519 +ADC(PA5) 520 +)))|(% style="width:184px" %)((( 521 +Digital Interrupt1(PA8) 522 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 523 + 524 +[[image:image-20230513111203-7.png||height="324" width="975"]] 525 + 526 + 527 +==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 528 + 529 + 530 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 531 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 532 +**Size(bytes)** 533 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 534 +|**Value**|BAT|(% style="width:207px" %)((( 535 +Temperature(DS18B20) 536 +(PC13) 537 +)))|(% style="width:94px" %)((( 538 +ADC1(PA4) 539 +)))|(% style="width:198px" %)((( 540 +Digital Interrupt(PB15) 541 +)))|(% style="width:84px" %)((( 542 +ADC2(PA5) 543 +)))|(% style="width:82px" %)((( 544 +ADC3(PA8) 545 +))) 546 + 547 +[[image:image-20230513111231-8.png||height="335" width="900"]] 548 + 549 + 550 +==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 551 + 552 + 553 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 554 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 555 +**Size(bytes)** 556 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 557 +|**Value**|BAT|((( 558 +Temperature1(DS18B20) 559 +(PC13) 560 +)))|((( 561 +Temperature2(DS18B20) 562 +(PB9) 563 +)))|((( 564 +Digital Interrupt 565 +(PB15) 566 +)))|(% style="width:193px" %)((( 567 +Temperature3(DS18B20) 568 +(PB8) 569 +)))|(% style="width:78px" %)((( 570 +Count1(PA8) 571 +)))|(% style="width:78px" %)((( 572 +Count2(PA4) 573 +))) 574 + 575 +[[image:image-20230513111255-9.png||height="341" width="899"]] 576 + 577 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 578 + 579 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 580 + 581 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 582 + 583 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 584 + 585 + 586 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 587 + 588 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 589 + 590 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 591 + 592 + 593 +=== 2.3.3 Decode payload === 594 + 595 + 596 +While using TTN V3 network, you can add the payload format to decode the payload. 597 + 598 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 599 + 600 +The payload decoder function for TTN V3 are here: 601 + 602 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 603 + 604 + 605 +==== 2.3.3.1 Battery Info ==== 606 + 607 + 608 +Check the battery voltage for SN50v3. 609 + 320 320 Ex1: 0x0B45 = 2885mV 321 321 322 322 Ex2: 0x0B49 = 2889mV 323 323 324 324 615 +==== 2.3.3.2 Temperature (DS18B20) ==== 325 325 326 -==== (% style="color:#4472c4" %)**Temperature**(%%) ==== 327 327 328 - **Example**:618 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 329 329 620 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 621 + 622 +(% style="color:blue" %)**Connection:** 623 + 624 +[[image:image-20230512180718-8.png||height="538" width="647"]] 625 + 626 + 627 +(% style="color:blue" %)**Example**: 628 + 330 330 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 331 331 332 332 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -334,200 +334,232 @@ 334 334 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 335 335 336 336 337 -==== (%style="color:#4472c4"%)**Humidity**(%%)====636 +==== 2.3.3.3 Digital Input ==== 338 338 339 339 340 - Read:0x(0197)=412Value:412/10=41.2,So 41.2%639 +The digital input for pin PB15, 341 341 641 +* When PB15 is high, the bit 1 of payload byte 6 is 1. 642 +* When PB15 is low, the bit 1 of payload byte 6 is 0. 342 342 343 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ==== 644 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 645 +((( 646 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 344 344 648 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 345 345 346 -**Example:** 650 + 651 +))) 347 347 348 - Ifpayload& 0x01 = 0x01 **~-~->** Thisisan AlarmMessage653 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 349 349 350 -If payload & 0x01 = 0x00 **~-~->** This is a normal uplink message, no alarm 351 351 352 - Ifpayload>>2=0x00**~-~->**means MOD=1,Thisisa samplinguplinkmessage656 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 353 353 354 - Ifpayload>>2=0x31**~-~->**meansMOD=31, thismessage isareplymessagefor polling,thismessagecontains thealarmsettings.see[[this link>>path:#HPolltheAlarmsettings:]]fordetail.658 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 355 355 660 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 356 356 357 - ==2.4 Payload Decoderfile==662 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 358 358 359 359 360 - InTTN,usecan add a custom payloadso itshows friendlyreading665 +==== 2.3.3.5 Digital Interrupt ==== 361 361 362 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 363 363 364 - [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]668 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 365 365 670 +(% style="color:blue" %)** Interrupt connection method:** 366 366 367 - == 2.5 DatalogFeature ==672 +[[image:image-20230513105351-5.png||height="147" width="485"]] 368 368 369 369 370 - DatalogFeature isoensure IoT Servercan get all samplingdata fromSensoreveniftheLoRaWAN network isdown. Foreachsampling, S31x-LB willstorethe reading for future retrieving purposes.675 +(% style="color:blue" %)**Example to use with door sensor :** 371 371 677 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 372 372 373 - === 2.5.1 Ways togettalog via=679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 374 374 681 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 375 375 376 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 377 377 378 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 379 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 684 +(% style="color:blue" %)**Below is the installation example:** 380 380 381 - Belowisthe typicalcasefor theauto-updatedatalogfeature(SetPNACKMD=1)686 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 382 382 383 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 688 +* ((( 689 +One pin to SN50_v3's PA8 pin 690 +))) 691 +* ((( 692 +The other pin to SN50_v3's VDD pin 693 +))) 384 384 385 - ===2.5.2UnixTimeStamp===695 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 386 386 697 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 387 387 388 - S31x-LBusesUnixTimeStampformatbasedon699 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 389 389 390 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L HT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png"height="97" width="627"]]701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 391 391 392 - Usercan getthis timefromlink: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]]:703 +The above photos shows the two parts of the magnetic switch fitted to a door. 393 393 394 - Belowis theconverter example705 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 395 395 396 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png"height="298" width="720"]]707 +The command is: 397 397 398 - So,weanuse AT+TIMESTAMP=1611889405ordownlink 3060137afd00to setthe current time2021– Jan~-~- 29 Friday03:03:25709 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 399 399 711 +Below shows some screen captures in TTN V3: 400 400 401 - === 2.5.3Set DeviceTime=713 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 402 402 403 403 404 - User needto set(%style="color:blue"%)**SYNCMOD=1**(%%) to enablesynctimeviaMAC command.716 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 405 405 406 - Once S31x-LB JoinedLoRaWAN network,it will send the MAC command(DeviceTimeReq) and the server will replywith (DeviceTimeAns)tosend the current time to S31x-LB.If S31x-LB fails to get the time from the server,S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).718 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 407 407 408 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 409 409 721 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 410 410 411 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 412 412 724 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 413 413 414 - TheDataloguplinks willusebelowpayloadformat.726 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 415 415 416 - **Retrievaldata payload:**728 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 417 417 418 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 419 -|=(% style="width: 80px;background-color:#D9E2F3" %)((( 420 -**Size(bytes)** 421 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 422 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 423 -[[Temp_Black>>||anchor="HTemperatureBlack:"]] 424 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 730 +Below is the connection to SHT20/ SHT31. The connection is as below: 425 425 426 -**Poll message flag & Ext:** 427 427 428 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png"height="112" width="754"]]733 +[[image:image-20230513103633-3.png||height="448" width="716"]] 429 429 430 - **No ACK Message**: 1:This messagemeans thispayloadis fromn UplinkMessagewhich doesn't getACK fromthe server before(for**PNACKMD=1**feature)735 +The device will be able to get the I2C sensor data now and upload to IoT Server. 431 431 432 - **Poll MessageFlag**:1: This messageispoll messagey.737 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 433 433 434 - * PollMessageFlagis setto1.739 +Convert the read byte to decimal and divide it by ten. 435 435 436 -* ch data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.741 +**Example:** 437 437 438 - Forexample, in US915 band,themax payloadfordifferentDRis:743 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 439 439 440 - **a)DR0:**maxis11bytessooneentryofdata745 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 441 441 442 - **b)DR1:**maxis53 bytessodeviceswill upload4entriesofdata(total44 bytes)747 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 443 443 444 -**c) DR2:** total payload includes 11 entries of data 445 445 446 - **d)DR3:**total payload includes22entriesof data.750 +==== 2.3.3.7 Distance Reading ==== 447 447 448 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 449 449 753 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 450 450 755 + 756 +==== 2.3.3.8 Ultrasonic Sensor ==== 757 + 758 + 759 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 760 + 761 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 762 + 763 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 764 + 765 +The picture below shows the connection: 766 + 767 +[[image:image-20230512173903-6.png||height="596" width="715"]] 768 + 769 + 770 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 771 + 772 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 773 + 451 451 **Example:** 452 452 453 - If S31x-LB hasbelow datainsideFlash:776 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 454 454 455 -[[image:1682646494051-944.png]] 456 456 457 - Ifusersendsbelowdownlinkcommand: 3160065F9760066DA705779 +==== 2.3.3.9 Battery Output - BAT pin ==== 458 458 459 -Where : Start time: 60065F97 = time 21/1/19 04:27:03 460 460 461 - Stop time:60066DA7=time21/1/1905:27:03782 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 462 462 463 463 464 - **S31x-LBwilluplinkthispayload.**785 +==== 2.3.3.10 +5V Output ==== 465 465 466 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 467 467 468 -((( 469 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 470 -))) 788 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 471 471 472 -((( 473 -Where the first 11 bytes is for the first entry: 474 -))) 790 +The 5V output time can be controlled by AT Command. 475 475 476 -((( 477 -7FFF089801464160065F97 478 -))) 792 +(% style="color:blue" %)**AT+5VT=1000** 479 479 480 -((( 481 -**Ext sensor data**=0x7FFF/100=327.67 482 -))) 794 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 483 483 484 -((( 485 -**Temp**=0x088E/100=22.00 486 -))) 796 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 487 487 488 -((( 489 -**Hum**=0x014B/10=32.6 490 -))) 491 491 492 -((( 493 -**poll message flag & Ext**=0x41,means reply data,Ext=1 494 -))) 799 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 495 495 496 -((( 497 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 498 -))) 499 499 802 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 500 500 501 - (% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true"height="15"role="presentation" title="单击并拖动以移动"width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的804 +[[image:image-20230512172447-4.png||height="416" width="712"]] 502 502 503 -== 2.6 Temperature Alarm Feature == 504 504 807 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 505 505 506 -S31x-LB work flow with Alarm feature. 507 507 810 +==== 2.3.3.12 Working MOD ==== 508 508 509 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 510 510 813 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 511 511 512 - ==2.7FrequencyPlans==815 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 513 513 817 +Case 7^^th^^ Byte >> 2 & 0x1f: 514 514 515 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 819 +* 0: MOD1 820 +* 1: MOD2 821 +* 2: MOD3 822 +* 3: MOD4 823 +* 4: MOD5 824 +* 5: MOD6 825 +* 6: MOD7 826 +* 7: MOD8 827 +* 8: MOD9 516 516 829 + 830 + 831 +== 2.4 Payload Decoder file == 832 + 833 + 834 +In TTN, use can add a custom payload so it shows friendly reading 835 + 836 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 837 + 838 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 839 + 840 + 841 +== 2.5 Frequency Plans == 842 + 843 + 844 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 845 + 517 517 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 518 518 519 519 520 -= 3. Configure S3 1x-LB =849 += 3. Configure SN50v3-LB = 521 521 522 522 == 3.1 Configure Methods == 523 523 524 524 525 -S3 1x-LB supports below configure method:854 +SN50v3-LB supports below configure method: 526 526 527 527 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 528 528 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 529 529 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 530 530 860 + 861 + 531 531 == 3.2 General Commands == 532 532 533 533 ... ... @@ -541,7 +541,7 @@ 541 541 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 542 542 543 543 544 -== 3.3 Commands special design for S3 1x-LB ==875 +== 3.3 Commands special design for SN50v3-LB == 545 545 546 546 547 547 These commands only valid for S31x-LB, as below: ... ... @@ -575,10 +575,12 @@ 575 575 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 576 576 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 577 577 909 + 910 + 578 578 === 3.3.2 Get Device Status === 579 579 580 580 581 -Send a LoRaWAN downlink to ask device send Alarmsettings.914 +Send a LoRaWAN downlink to ask the device to send its status. 582 582 583 583 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 584 584 ... ... @@ -585,112 +585,163 @@ 585 585 Sensor will upload Device Status via FPORT=5. See payload section for detail. 586 586 587 587 588 -=== 3.3.3 Set TemperatureAlarm Threshold ===921 +=== 3.3.3 Set Interrupt Mode === 589 589 590 -* (% style="color:blue" %)**AT Command:** 591 591 592 - (%style="color:#037691"%)**AT+SHTEMP=min,max**924 +Feature, Set Interrupt mode for GPIO_EXIT. 593 593 594 -* When min=0, and max≠0, Alarm higher than max 595 -* When min≠0, and max=0, Alarm lower than min 596 -* When min≠0 and max≠0, Alarm higher than max or lower than min 926 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 597 597 598 -Example: 928 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 929 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 930 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 931 +0 932 +OK 933 +the mode is 0 =Disable Interrupt 934 +))) 935 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 936 +Set Transmit Interval 937 +0. (Disable Interrupt), 938 +~1. (Trigger by rising and falling edge) 939 +2. (Trigger by falling edge) 940 +3. (Trigger by rising edge) 941 +)))|(% style="width:157px" %)OK 942 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 943 +Set Transmit Interval 599 599 600 - AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 945 +trigger by rising edge. 946 +)))|(% style="width:157px" %)OK 947 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 601 601 602 - *(% style="color:blue" %)**DownlinkPayload:**949 +(% style="color:blue" %)**Downlink Command: 0x06** 603 603 604 - (% style="color:#037691"%)**0x(0C01001E)**(%%)~/~/ SetAT+SHTEMP=0,30951 +Format: Command Code (0x06) followed by 3 bytes. 605 605 606 - (%style="color:red"%)**(note:3^^rd^^byte=0x00forlow limit(notset),4^^th^^byte= 0x1E forhighlimit: 30)**953 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 607 607 955 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 956 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 957 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 958 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 608 608 609 -=== 3.3.4 Set Humidity Alarm Threshold === 610 610 611 -* (% style="color:blue" %)**AT Command:** 612 612 613 - (%style="color:#037691"%)**AT+SHHUM=min,max**962 +=== 3.3.4 Set Power Output Duration === 614 614 615 -* When min=0, and max≠0, Alarm higher than max 616 -* When min≠0, and max=0, Alarm lower than min 617 -* When min≠0 and max≠0, Alarm higher than max or lower than min 618 618 619 - Example:965 +Control the output duration 5V . Before each sampling, device will 620 620 621 - AT+SHHUM=70,0~/~/Alarmwhenhumiditylower than70%.967 +~1. first enable the power output to external sensor, 622 622 623 - *(%style="color:blue"%)**DownlinkPayload:**969 +2. keep it on as per duration, read sensor value and construct uplink payload 624 624 625 - (%style="color:#037691"%)**0x(0C02 46 00)**(%%) ~/~/ SetAT+SHTHUM=70,0971 +3. final, close the power output. 626 626 627 -(% style="color: red" %)**(note:3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (notset))**973 +(% style="color:blue" %)**AT Command: AT+5VT** 628 628 975 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 976 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 977 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 978 +500(default) 979 +OK 980 +))) 981 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 982 +Close after a delay of 1000 milliseconds. 983 +)))|(% style="width:157px" %)OK 629 629 630 - ===3.3.5 SetAlarmInterval===985 +(% style="color:blue" %)**Downlink Command: 0x07** 631 631 632 - The shortesttimeoftwoAlarm packet.(unit:min)987 +Format: Command Code (0x07) followed by 2 bytes. 633 633 634 - *(%style="color:blue"%)**ATCommand:**989 +The first and second bytes are the time to turn on. 635 635 636 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 991 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 992 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 637 637 638 -* (% style="color:blue" %)**Downlink Payload:** 639 639 640 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 641 641 996 +=== 3.3.5 Set Weighing parameters === 642 642 643 -=== 3.3.6 Get Alarm settings === 644 644 999 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 645 645 646 - Senda LoRaWAN downlinktoask device send Alarm settings.1001 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 647 647 648 -* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 1003 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1004 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1005 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1006 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1007 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 649 649 650 -** Example:**1009 +(% style="color:blue" %)**Downlink Command: 0x08** 651 651 652 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]1011 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 653 653 1013 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 654 654 655 - **Explain:**1015 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 656 656 657 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 1017 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1018 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1019 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 658 658 659 -=== 3.3.7 Set Interrupt Mode === 660 660 661 661 662 - Feature,SetInterruptmodefor GPIO_EXIT.1023 +=== 3.3.6 Set Digital pulse count value === 663 663 664 -(% style="color:blue" %)**AT Command: AT+INTMOD** 665 665 1026 +Feature: Set the pulse count value. 1027 + 1028 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1029 + 1030 +(% style="color:blue" %)**AT Command: AT+SETCNT** 1031 + 666 666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 667 667 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 668 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 669 -0 1034 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1035 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1036 + 1037 +(% style="color:blue" %)**Downlink Command: 0x09** 1038 + 1039 +Format: Command Code (0x09) followed by 5 bytes. 1040 + 1041 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1042 + 1043 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1044 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1045 + 1046 + 1047 + 1048 +=== 3.3.7 Set Workmode === 1049 + 1050 + 1051 +Feature: Switch working mode. 1052 + 1053 +(% style="color:blue" %)**AT Command: AT+MOD** 1054 + 1055 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1056 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1057 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 670 670 OK 671 -the mode is 0 =Disable Interrupt 672 672 ))) 673 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 674 -Set Transmit Interval 675 -0. (Disable Interrupt), 676 -~1. (Trigger by rising and falling edge) 677 -2. (Trigger by falling edge) 678 -3. (Trigger by rising edge) 679 -)))|(% style="width:157px" %)OK 1060 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1061 +OK 1062 +Attention:Take effect after ATZ 1063 +))) 680 680 681 -(% style="color:blue" %)**Downlink Command: 0x0 6**1065 +(% style="color:blue" %)**Downlink Command: 0x0A** 682 682 683 -Format: Command Code (0x0 6) followed by3bytes.1067 +Format: Command Code (0x0A) followed by 1 bytes. 684 684 685 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1069 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1070 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 686 686 687 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 688 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 689 689 1073 + 690 690 = 4. Battery & Power Consumption = 691 691 692 692 693 -S3 1x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.1077 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 694 694 695 695 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 696 696 ... ... @@ -699,7 +699,7 @@ 699 699 700 700 701 701 (% class="wikigeneratedid" %) 702 -User can change firmware S3 1x-LB to:1086 +User can change firmware SN50v3-LB to: 703 703 704 704 * Change Frequency band/ region. 705 705 * Update with new features. ... ... @@ -713,53 +713,62 @@ 713 713 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 714 714 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 715 715 1100 + 1101 + 716 716 = 6. FAQ = 717 717 1104 +== 6.1 Where can i find source code of SN50v3-LB? == 718 718 719 719 1107 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1108 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1109 + 1110 + 1111 + 720 720 = 7. Order Info = 721 721 722 722 723 -Part Number: 1-LB-XX/ S31B-LB-XX**1115 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 724 724 725 725 (% style="color:red" %)**XX**(%%): The default frequency band 726 726 727 727 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 728 - 729 729 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 730 - 731 731 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 732 - 733 733 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 734 - 735 735 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 736 - 737 737 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 738 - 739 739 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 740 - 741 741 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 742 742 743 -= =1128 +(% style="color:red" %)**YY: ** (%%)Hole Option 744 744 1130 +* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole 1131 +* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole 1132 +* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1133 +* (% style="color:red" %)**NH**(%%): No Hole 1134 + 1135 + 1136 + 745 745 = 8. Packing Info = 746 746 1139 + 747 747 (% style="color:#037691" %)**Package Includes**: 748 748 749 -* S3 1x-LB LoRaWANTemperature & HumiditySensor1142 +* SN50v3-LB LoRaWAN Generic Node 750 750 751 751 (% style="color:#037691" %)**Dimension and weight**: 752 752 753 753 * Device Size: cm 754 - 755 755 * Device Weight: g 756 - 757 757 * Package Size / pcs : cm 758 - 759 759 * Weight / pcs : g 760 760 1151 + 1152 + 761 761 = 9. Support = 762 762 763 763 764 764 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 765 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1157 + 1158 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230511203450-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +679.1 KB - Content
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content