Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20240717141512-1.jpeg", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 17 added, 0 removed)
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,16 +39,15 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 48 49 49 (% style="color:#037691" %)**Common DC Characteristics:** 50 50 51 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 52 52 * Operating Temperature: -40 ~~ 85°C 53 53 54 54 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -80,8 +80,6 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 87 ... ... @@ -93,11 +93,10 @@ 93 93 == 1.5 Button & LEDs == 94 94 95 95 96 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 97 97 98 - 99 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 100 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 101 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 102 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 103 103 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -109,12 +109,10 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 117 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 118 118 119 119 120 120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -134,18 +134,23 @@ 134 134 135 135 == 1.8 Mechanical == 136 136 135 +=== 1.8.1 for LB version === 137 137 138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 139 139 140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 141 141 140 + 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 143 +=== 1.8.2 for LS version === 144 144 145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 146 + 147 + 145 145 == 1.9 Hole Option == 146 146 147 147 148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 149 149 150 150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 151 151 ... ... @@ -152,12 +152,12 @@ 152 152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 153 153 154 154 155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 156 156 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -168,9 +168,9 @@ 168 168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 172 172 173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 174 174 175 175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 176 176 ... ... @@ -198,12 +198,10 @@ 198 198 199 199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 200 200 204 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 201 201 202 - (%style="color:blue"%)**Step2:**(%%) Activate SN50v3-LB206 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 203 203 204 - 205 -Press the button for 5 seconds to activate the SN50v3-LB. 206 - 207 207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 208 208 209 209 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -214,13 +214,13 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 218 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 221 221 222 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)223 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**223 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 224 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 ... ... @@ -227,7 +227,7 @@ 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 231 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 ... ... @@ -283,7 +283,7 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 287 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 287 287 288 288 For example: 289 289 ... ... @@ -292,7 +292,7 @@ 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 296 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 296 296 297 297 2. All modes share the same Payload Explanation from HERE. 298 298 ... ... @@ -304,8 +304,8 @@ 304 304 305 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)308 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**308 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 309 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 309 309 |Value|Bat|(% style="width:191px" %)((( 310 310 Temperature(DS18B20)(PC13) 311 311 )))|(% style="width:78px" %)((( ... ... @@ -326,8 +326,8 @@ 326 326 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)330 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**330 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 331 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 331 331 |Value|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( ... ... @@ -356,8 +356,8 @@ 356 356 357 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 358 358 359 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)360 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**360 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 361 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2** 361 361 |Value|BAT|(% style="width:183px" %)((( 362 362 Temperature(DS18B20)(PC13) 363 363 )))|(% style="width:173px" %)((( ... ... @@ -391,10 +391,10 @@ 391 391 392 392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 393 393 394 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)395 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((395 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 396 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 396 396 **Size(bytes)** 397 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1398 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 398 398 |Value|(% style="width:68px" %)((( 399 399 ADC1(PA4) 400 400 )))|(% style="width:75px" %)((( ... ... @@ -417,8 +417,8 @@ 417 417 418 418 This mode has total 11 bytes. As shown below: 419 419 420 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)421 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**421 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 422 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2** 422 422 |Value|BAT|(% style="width:186px" %)((( 423 423 Temperature1(DS18B20)(PC13) 424 424 )))|(% style="width:82px" %)((( ... ... @@ -458,10 +458,10 @@ 458 458 459 459 Check the response of this command and adjust the value to match the real value for thing. 460 460 461 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)462 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((462 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 463 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 463 463 **Size(bytes)** 464 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**4**465 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4** 465 465 |Value|BAT|(% style="width:193px" %)((( 466 466 Temperature(DS18B20)(PC13) 467 467 )))|(% style="width:85px" %)((( ... ... @@ -485,8 +485,8 @@ 485 485 486 486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 487 488 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)489 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**4**489 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 490 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4** 490 490 |Value|BAT|(% style="width:256px" %)((( 491 491 Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:108px" %)((( ... ... @@ -503,10 +503,10 @@ 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 505 505 506 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)507 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((507 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 508 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 508 508 **Size(bytes)** 509 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2510 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 510 510 |Value|BAT|(% style="width:188px" %)((( 511 511 Temperature(DS18B20) 512 512 (PC13) ... ... @@ -522,10 +522,10 @@ 522 522 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 523 523 524 524 525 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)526 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((526 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 527 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 527 527 **Size(bytes)** 528 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)2529 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2 529 529 |Value|BAT|(% style="width:207px" %)((( 530 530 Temperature(DS18B20) 531 531 (PC13) ... ... @@ -545,10 +545,10 @@ 545 545 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 546 546 547 547 548 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)549 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((549 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 550 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 550 550 **Size(bytes)** 551 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4552 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4 552 552 |Value|BAT|((( 553 553 Temperature 554 554 (DS18B20)(PC13) ... ... @@ -585,6 +585,136 @@ 585 585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 589 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 590 + 591 + 592 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 593 + 594 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 595 + 596 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 597 + 598 + 599 +===== 2.3.2.10.a Uplink, PWM input capture ===== 600 + 601 + 602 +[[image:image-20230817172209-2.png||height="439" width="683"]] 603 + 604 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 605 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 606 +|Value|Bat|(% style="width:191px" %)((( 607 +Temperature(DS18B20)(PC13) 608 +)))|(% style="width:78px" %)((( 609 +ADC(PA4) 610 +)))|(% style="width:135px" %)((( 611 +PWM_Setting 612 +&Digital Interrupt(PA8) 613 +)))|(% style="width:70px" %)((( 614 +Pulse period 615 +)))|(% style="width:89px" %)((( 616 +Duration of high level 617 +))) 618 + 619 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 620 + 621 + 622 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 623 + 624 +**Frequency:** 625 + 626 +(% class="MsoNormal" %) 627 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 628 + 629 +(% class="MsoNormal" %) 630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 631 + 632 + 633 +(% class="MsoNormal" %) 634 +**Duty cycle:** 635 + 636 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 637 + 638 +[[image:image-20230818092200-1.png||height="344" width="627"]] 639 + 640 + 641 +===== 2.3.2.10.b Uplink, PWM output ===== 642 + 643 + 644 +[[image:image-20230817172209-2.png||height="439" width="683"]] 645 + 646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 647 + 648 +a is the time delay of the output, the unit is ms. 649 + 650 +b is the output frequency, the unit is HZ. 651 + 652 +c is the duty cycle of the output, the unit is %. 653 + 654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 655 + 656 +aa is the time delay of the output, the unit is ms. 657 + 658 +bb is the output frequency, the unit is HZ. 659 + 660 +cc is the duty cycle of the output, the unit is %. 661 + 662 + 663 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 664 + 665 +The oscilloscope displays as follows: 666 + 667 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 668 + 669 + 670 +===== 2.3.2.10.c Downlink, PWM output ===== 671 + 672 + 673 +[[image:image-20230817173800-3.png||height="412" width="685"]] 674 + 675 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 676 + 677 + xx xx xx is the output frequency, the unit is HZ. 678 + 679 + yy is the duty cycle of the output, the unit is %. 680 + 681 + zz zz is the time delay of the output, the unit is ms. 682 + 683 + 684 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 685 + 686 +The oscilloscope displays as follows: 687 + 688 +[[image:image-20230817173858-5.png||height="634" width="843"]] 689 + 690 + 691 + 692 +==== 2.3.2.11 MOD~=11 (TEMP117) ==== 693 + 694 + 695 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 696 + 697 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 698 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 699 +|Value|Bat|(% style="width:191px" %)((( 700 +Temperature(DS18B20)(PC13) 701 +)))|(% style="width:78px" %)((( 702 +ADC(PA4) 703 +)))|(% style="width:216px" %)((( 704 +Digital in(PB15)&Digital Interrupt(PA8) 705 +)))|(% style="width:308px" %)((( 706 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 707 +)))|(% style="width:154px" %)((( 708 +Humidity(SHT20 or SHT31) 709 +))) 710 + 711 +[[image:image-20240717113113-1.png||height="361" width="814"]] 712 + 713 + 714 +==== 2.3.2.12 MOD~=12 ==== 715 + 716 + 717 + 718 + 588 588 === 2.3.3 Decode payload === 589 589 590 590 ... ... @@ -594,13 +594,13 @@ 594 594 595 595 The payload decoder function for TTN V3 are here: 596 596 597 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 728 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 598 598 599 599 600 600 ==== 2.3.3.1 Battery Info ==== 601 601 602 602 603 -Check the battery voltage for SN50v3-LB. 734 +Check the battery voltage for SN50v3-LB/LS. 604 604 605 605 Ex1: 0x0B45 = 2885mV 606 606 ... ... @@ -662,10 +662,12 @@ 662 662 663 663 [[image:image-20230811113449-1.png||height="370" width="608"]] 664 664 796 + 797 + 665 665 ==== 2.3.3.5 Digital Interrupt ==== 666 666 667 667 668 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 801 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 669 669 670 670 (% style="color:blue" %)** Interrupt connection method:** 671 671 ... ... @@ -678,18 +678,18 @@ 678 678 679 679 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 680 680 681 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 814 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 682 682 683 683 684 684 (% style="color:blue" %)**Below is the installation example:** 685 685 686 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 819 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 687 687 688 688 * ((( 689 -One pin to SN50v3-LB's PA8 pin 822 +One pin to SN50v3-LB/LS's PA8 pin 690 690 ))) 691 691 * ((( 692 -The other pin to SN50v3-LB's VDD pin 825 +The other pin to SN50v3-LB/LS's VDD pin 693 693 ))) 694 694 695 695 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -725,7 +725,7 @@ 725 725 726 726 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 727 727 728 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 861 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 729 729 730 730 731 731 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -759,7 +759,7 @@ 759 759 760 760 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 761 761 762 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 895 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 763 763 764 764 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 765 765 ... ... @@ -768,7 +768,7 @@ 768 768 [[image:image-20230512173903-6.png||height="596" width="715"]] 769 769 770 770 771 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 904 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 772 772 773 773 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 774 774 ... ... @@ -780,13 +780,13 @@ 780 780 ==== 2.3.3.9 Battery Output - BAT pin ==== 781 781 782 782 783 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 916 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 784 784 785 785 786 786 ==== 2.3.3.10 +5V Output ==== 787 787 788 788 789 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 922 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 790 790 791 791 The 5V output time can be controlled by AT Command. 792 792 ... ... @@ -808,9 +808,37 @@ 808 808 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 809 809 810 810 811 -==== 2.3.3.12 W orkingMOD ====944 +==== 2.3.3.12 PWM MOD ==== 812 812 813 813 947 +* ((( 948 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 949 +))) 950 +* ((( 951 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 952 +))) 953 + 954 + [[image:image-20230817183249-3.png||height="320" width="417"]] 955 + 956 +* ((( 957 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 958 +))) 959 +* ((( 960 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 961 +))) 962 +* ((( 963 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 964 + 965 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 966 + 967 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 968 + 969 +b) If the output duration is more than 30 seconds, better to use external power source. 970 +))) 971 + 972 +==== 2.3.3.13 Working MOD ==== 973 + 974 + 814 814 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 815 815 816 816 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -826,9 +826,8 @@ 826 826 * 6: MOD7 827 827 * 7: MOD8 828 828 * 8: MOD9 990 +* 9: MOD10 829 829 830 - 831 - 832 832 == 2.4 Payload Decoder file == 833 833 834 834 ... ... @@ -842,24 +842,22 @@ 842 842 == 2.5 Frequency Plans == 843 843 844 844 845 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.1005 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 846 846 847 847 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 848 848 849 849 850 -= 3. Configure SN50v3-LB = 1010 += 3. Configure SN50v3-LB/LS = 851 851 852 852 == 3.1 Configure Methods == 853 853 854 854 855 -SN50v3-LB supports below configure method: 1015 +SN50v3-LB/LS supports below configure method: 856 856 857 857 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 858 858 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 859 859 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 860 860 861 - 862 - 863 863 == 3.2 General Commands == 864 864 865 865 ... ... @@ -873,10 +873,10 @@ 873 873 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 874 874 875 875 876 -== 3.3 Commands special design for SN50v3-LB == 1034 +== 3.3 Commands special design for SN50v3-LB/LS == 877 877 878 878 879 -These commands only valid for SN50v3-LB, as below: 1037 +These commands only valid for SN50v3-LB/LS, as below: 880 880 881 881 882 882 === 3.3.1 Set Transmit Interval Time === ... ... @@ -887,7 +887,7 @@ 887 887 (% style="color:blue" %)**AT Command: AT+TDC** 888 888 889 889 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 890 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1048 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 891 891 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 892 892 30000 893 893 OK ... ... @@ -907,8 +907,6 @@ 907 907 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 908 908 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 909 909 910 - 911 - 912 912 === 3.3.2 Get Device Status === 913 913 914 914 ... ... @@ -924,10 +924,10 @@ 924 924 925 925 Feature, Set Interrupt mode for GPIO_EXIT. 926 926 927 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1083 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 928 928 929 929 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 930 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1086 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 931 931 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 932 932 0 933 933 OK ... ... @@ -957,8 +957,6 @@ 957 957 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 958 958 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 959 959 960 - 961 - 962 962 === 3.3.4 Set Power Output Duration === 963 963 964 964 ... ... @@ -973,7 +973,7 @@ 973 973 (% style="color:blue" %)**AT Command: AT+5VT** 974 974 975 975 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 976 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 977 977 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 978 978 500(default) 979 979 OK ... ... @@ -991,8 +991,6 @@ 991 991 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 992 992 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 993 993 994 - 995 - 996 996 === 3.3.5 Set Weighing parameters === 997 997 998 998 ... ... @@ -1001,9 +1001,9 @@ 1001 1001 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1002 1002 1003 1003 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1004 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1156 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1005 1005 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1006 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1158 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1007 1007 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1008 1008 1009 1009 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1018,8 +1018,6 @@ 1018 1018 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1019 1019 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1020 1020 1021 - 1022 - 1023 1023 === 3.3.6 Set Digital pulse count value === 1024 1024 1025 1025 ... ... @@ -1029,8 +1029,8 @@ 1029 1029 1030 1030 (% style="color:blue" %)**AT Command: AT+SETCNT** 1031 1031 1032 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1033 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1182 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1183 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1034 1034 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1035 1035 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1036 1036 ... ... @@ -1043,8 +1043,6 @@ 1043 1043 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1044 1044 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1045 1045 1046 - 1047 - 1048 1048 === 3.3.7 Set Workmode === 1049 1049 1050 1050 ... ... @@ -1052,8 +1052,8 @@ 1052 1052 1053 1053 (% style="color:blue" %)**AT Command: AT+MOD** 1054 1054 1055 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1056 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1203 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1204 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1057 1057 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1058 1058 OK 1059 1059 ))) ... ... @@ -1069,13 +1069,97 @@ 1069 1069 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1070 1070 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1071 1071 1220 +=== 3.3.8 PWM setting === 1072 1072 1073 1073 1074 - = 4. Battery&PowerConsumption=1223 +Feature: Set the time acquisition unit for PWM input capture. 1075 1075 1225 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1076 1076 1077 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1227 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1228 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1229 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1230 +0(default) 1231 +OK 1232 +))) 1233 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1234 +OK 1235 + 1236 +))) 1237 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1078 1078 1239 +(% style="color:blue" %)**Downlink Command: 0x0C** 1240 + 1241 +Format: Command Code (0x0C) followed by 1 bytes. 1242 + 1243 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1244 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1245 + 1246 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1247 + 1248 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1249 + 1250 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1251 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1252 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1253 +0,0,0(default) 1254 +OK 1255 +))) 1256 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1257 +OK 1258 + 1259 +))) 1260 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1261 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1262 + 1263 + 1264 +)))|(% style="width:137px" %)((( 1265 +OK 1266 +))) 1267 + 1268 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1269 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1270 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1271 +AT+PWMOUT=a,b,c 1272 + 1273 + 1274 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1275 +Set PWM output time, output frequency and output duty cycle. 1276 + 1277 +((( 1278 + 1279 +))) 1280 + 1281 +((( 1282 + 1283 +))) 1284 +)))|(% style="width:242px" %)((( 1285 +a: Output time (unit: seconds) 1286 +The value ranges from 0 to 65535. 1287 +When a=65535, PWM will always output. 1288 +))) 1289 +|(% style="width:242px" %)((( 1290 +b: Output frequency (unit: HZ) 1291 +))) 1292 +|(% style="width:242px" %)((( 1293 +c: Output duty cycle (unit: %) 1294 +The value ranges from 0 to 100. 1295 +))) 1296 + 1297 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1298 + 1299 +Format: Command Code (0x0B01) followed by 6 bytes. 1300 + 1301 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1302 + 1303 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1304 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1305 + 1306 += 4. Battery & Power Cons = 1307 + 1308 + 1309 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1310 + 1079 1079 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1080 1080 1081 1081 ... ... @@ -1083,7 +1083,7 @@ 1083 1083 1084 1084 1085 1085 (% class="wikigeneratedid" %) 1086 -**User can change firmware SN50v3-LB to:** 1318 +**User can change firmware SN50v3-LB/LS to:** 1087 1087 1088 1088 * Change Frequency band/ region. 1089 1089 * Update with new features. ... ... @@ -1096,28 +1096,24 @@ 1096 1096 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1097 1097 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1098 1098 1099 - 1100 - 1101 1101 = 6. FAQ = 1102 1102 1103 -== 6.1 Where can i find source code of SN50v3-LB? == 1333 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1104 1104 1105 1105 1106 1106 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1107 1107 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1108 1108 1339 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1109 1109 1110 1110 1111 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1112 - 1113 - 1114 1114 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1115 1115 1116 1116 1117 -== 6.3 How to put several sensors to a SN50v3-LB? == 1345 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1118 1118 1119 1119 1120 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1348 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1121 1121 1122 1122 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1123 1123 ... ... @@ -1127,7 +1127,7 @@ 1127 1127 = 7. Order Info = 1128 1128 1129 1129 1130 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1358 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1131 1131 1132 1132 (% style="color:red" %)**XX**(%%): The default frequency band 1133 1133 ... ... @@ -1147,14 +1147,12 @@ 1147 1147 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1148 1148 * (% style="color:red" %)**NH**(%%): No Hole 1149 1149 1150 - 1151 - 1152 1152 = 8. Packing Info = 1153 1153 1154 1154 1155 1155 (% style="color:#037691" %)**Package Includes**: 1156 1156 1157 -* SN50v3-LB LoRaWAN Generic Node 1383 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1158 1158 1159 1159 (% style="color:#037691" %)**Dimension and weight**: 1160 1160 ... ... @@ -1163,8 +1163,6 @@ 1163 1163 * Package Size / pcs : cm 1164 1164 * Weight / pcs : g 1165 1165 1166 - 1167 - 1168 1168 = 9. Support = 1169 1169 1170 1170
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.8 KB - Content