Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20240717141528-2.jpeg", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 18 added, 0 removed)
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
- image-20240717141528-2.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.ting - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,15 +39,15 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 47 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 51 51 * Operating Temperature: -40 ~~ 85°C 52 52 53 53 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -79,7 +79,6 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -91,11 +91,10 @@ 91 91 == 1.5 Button & LEDs == 92 92 93 93 94 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 95 95 96 - 97 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 98 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 99 99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 100 100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 101 101 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -107,11 +107,10 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 114 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 115 115 116 116 117 117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -131,18 +131,23 @@ 131 131 132 132 == 1.8 Mechanical == 133 133 135 +=== 1.8.1 for LB version === 134 134 135 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 136 136 137 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 138 140 + 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 143 +=== 1.8.2 for LS version === 141 141 145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 146 + 147 + 142 142 == 1.9 Hole Option == 143 143 144 144 145 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 146 146 147 147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 148 148 ... ... @@ -149,12 +149,12 @@ 149 149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 150 150 151 151 152 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 153 153 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,9 +165,9 @@ 165 165 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 169 169 170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 171 171 172 172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 173 173 ... ... @@ -195,12 +195,10 @@ 195 195 196 196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 197 197 204 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 198 198 199 - (%style="color:blue"%)**Step2:**(%%) Activate SN50v3-LB206 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 200 200 201 - 202 -Press the button for 5 seconds to activate the SN50v3-LB. 203 - 204 204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 205 205 206 206 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -211,13 +211,13 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 218 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 218 218 219 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)220 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**223 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 224 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 222 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 ... ... @@ -224,7 +224,7 @@ 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 231 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 ... ... @@ -280,7 +280,7 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 287 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 284 284 285 285 For example: 286 286 ... ... @@ -289,7 +289,7 @@ 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 296 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 293 293 294 294 2. All modes share the same Payload Explanation from HERE. 295 295 ... ... @@ -301,8 +301,8 @@ 301 301 302 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 303 303 304 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)305 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**308 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 309 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 306 306 |Value|Bat|(% style="width:191px" %)((( 307 307 Temperature(DS18B20)(PC13) 308 308 )))|(% style="width:78px" %)((( ... ... @@ -323,8 +323,8 @@ 323 323 324 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 325 325 326 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)327 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**330 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 331 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 328 328 |Value|BAT|(% style="width:196px" %)((( 329 329 Temperature(DS18B20)(PC13) 330 330 )))|(% style="width:87px" %)((( ... ... @@ -353,8 +353,8 @@ 353 353 354 354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 355 355 356 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)357 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**360 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 361 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2** 358 358 |Value|BAT|(% style="width:183px" %)((( 359 359 Temperature(DS18B20)(PC13) 360 360 )))|(% style="width:173px" %)((( ... ... @@ -388,10 +388,10 @@ 388 388 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)392 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((395 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 396 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1398 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 395 395 |Value|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( ... ... @@ -414,8 +414,8 @@ 414 414 415 415 This mode has total 11 bytes. As shown below: 416 416 417 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)418 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**421 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 422 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2** 419 419 |Value|BAT|(% style="width:186px" %)((( 420 420 Temperature1(DS18B20)(PC13) 421 421 )))|(% style="width:82px" %)((( ... ... @@ -455,10 +455,10 @@ 455 455 456 456 Check the response of this command and adjust the value to match the real value for thing. 457 457 458 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)459 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((462 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 463 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 460 460 **Size(bytes)** 461 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**4**465 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4** 462 462 |Value|BAT|(% style="width:193px" %)((( 463 463 Temperature(DS18B20)(PC13) 464 464 )))|(% style="width:85px" %)((( ... ... @@ -470,7 +470,6 @@ 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -483,8 +483,8 @@ 483 483 484 484 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 485 486 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)487 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**4**489 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 490 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4** 488 488 |Value|BAT|(% style="width:256px" %)((( 489 489 Temperature(DS18B20)(PC13) 490 490 )))|(% style="width:108px" %)((( ... ... @@ -501,10 +501,10 @@ 501 501 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 502 502 503 503 504 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)505 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((507 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 508 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 506 506 **Size(bytes)** 507 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2510 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 508 508 |Value|BAT|(% style="width:188px" %)((( 509 509 Temperature(DS18B20) 510 510 (PC13) ... ... @@ -520,10 +520,10 @@ 520 520 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 521 521 522 522 523 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)524 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((526 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 527 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 525 525 **Size(bytes)** 526 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)2529 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2 527 527 |Value|BAT|(% style="width:207px" %)((( 528 528 Temperature(DS18B20) 529 529 (PC13) ... ... @@ -543,10 +543,10 @@ 543 543 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 544 544 545 545 546 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)547 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((549 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 550 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 548 548 **Size(bytes)** 549 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4552 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4 550 550 |Value|BAT|((( 551 551 Temperature 552 552 (DS18B20)(PC13) ... ... @@ -583,6 +583,136 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 589 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 590 + 591 + 592 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 593 + 594 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 595 + 596 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 597 + 598 + 599 +===== 2.3.2.10.a Uplink, PWM input capture ===== 600 + 601 + 602 +[[image:image-20230817172209-2.png||height="439" width="683"]] 603 + 604 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 605 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 606 +|Value|Bat|(% style="width:191px" %)((( 607 +Temperature(DS18B20)(PC13) 608 +)))|(% style="width:78px" %)((( 609 +ADC(PA4) 610 +)))|(% style="width:135px" %)((( 611 +PWM_Setting 612 +&Digital Interrupt(PA8) 613 +)))|(% style="width:70px" %)((( 614 +Pulse period 615 +)))|(% style="width:89px" %)((( 616 +Duration of high level 617 +))) 618 + 619 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 620 + 621 + 622 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 623 + 624 +**Frequency:** 625 + 626 +(% class="MsoNormal" %) 627 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 628 + 629 +(% class="MsoNormal" %) 630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 631 + 632 + 633 +(% class="MsoNormal" %) 634 +**Duty cycle:** 635 + 636 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 637 + 638 +[[image:image-20230818092200-1.png||height="344" width="627"]] 639 + 640 + 641 +===== 2.3.2.10.b Uplink, PWM output ===== 642 + 643 + 644 +[[image:image-20230817172209-2.png||height="439" width="683"]] 645 + 646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 647 + 648 +a is the time delay of the output, the unit is ms. 649 + 650 +b is the output frequency, the unit is HZ. 651 + 652 +c is the duty cycle of the output, the unit is %. 653 + 654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 655 + 656 +aa is the time delay of the output, the unit is ms. 657 + 658 +bb is the output frequency, the unit is HZ. 659 + 660 +cc is the duty cycle of the output, the unit is %. 661 + 662 + 663 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 664 + 665 +The oscilloscope displays as follows: 666 + 667 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 668 + 669 + 670 +===== 2.3.2.10.c Downlink, PWM output ===== 671 + 672 + 673 +[[image:image-20230817173800-3.png||height="412" width="685"]] 674 + 675 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 676 + 677 + xx xx xx is the output frequency, the unit is HZ. 678 + 679 + yy is the duty cycle of the output, the unit is %. 680 + 681 + zz zz is the time delay of the output, the unit is ms. 682 + 683 + 684 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 685 + 686 +The oscilloscope displays as follows: 687 + 688 +[[image:image-20230817173858-5.png||height="634" width="843"]] 689 + 690 + 691 + 692 +==== 2.3.2.11 MOD~=11 (TEMP117) ==== 693 + 694 + 695 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 696 + 697 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 698 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 699 +|Value|Bat|(% style="width:191px" %)((( 700 +Temperature(DS18B20)(PC13) 701 +)))|(% style="width:78px" %)((( 702 +ADC(PA4) 703 +)))|(% style="width:216px" %)((( 704 +Digital in(PB15)&Digital Interrupt(PA8) 705 +)))|(% style="width:308px" %)((( 706 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 707 +)))|(% style="width:154px" %)((( 708 +Humidity(SHT20 or SHT31) 709 +))) 710 + 711 +[[image:image-20240717113113-1.png||height="361" width="814"]] 712 + 713 + 714 +==== 2.3.2.12 MOD~=12 ==== 715 + 716 + 717 + 718 + 586 586 === 2.3.3 Decode payload === 587 587 588 588 ... ... @@ -592,13 +592,13 @@ 592 592 593 593 The payload decoder function for TTN V3 are here: 594 594 595 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 728 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 596 597 597 598 598 ==== 2.3.3.1 Battery Info ==== 599 599 600 600 601 -Check the battery voltage for SN50v3-LB. 734 +Check the battery voltage for SN50v3-LB/LS. 602 602 603 603 Ex1: 0x0B45 = 2885mV 604 604 ... ... @@ -660,10 +660,12 @@ 660 660 661 661 [[image:image-20230811113449-1.png||height="370" width="608"]] 662 662 796 + 797 + 663 663 ==== 2.3.3.5 Digital Interrupt ==== 664 664 665 665 666 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 801 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 667 667 668 668 (% style="color:blue" %)** Interrupt connection method:** 669 669 ... ... @@ -676,18 +676,18 @@ 676 676 677 677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 678 678 679 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 814 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 680 680 681 681 682 682 (% style="color:blue" %)**Below is the installation example:** 683 683 684 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 819 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 685 685 686 686 * ((( 687 -One pin to SN50v3-LB's PA8 pin 822 +One pin to SN50v3-LB/LS's PA8 pin 688 688 ))) 689 689 * ((( 690 -The other pin to SN50v3-LB's VDD pin 825 +The other pin to SN50v3-LB/LS's VDD pin 691 691 ))) 692 692 693 693 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -723,7 +723,7 @@ 723 723 724 724 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 725 725 726 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 861 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 727 727 728 728 729 729 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -757,7 +757,7 @@ 757 757 758 758 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 759 759 760 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 895 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 761 761 762 762 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 763 763 ... ... @@ -766,7 +766,7 @@ 766 766 [[image:image-20230512173903-6.png||height="596" width="715"]] 767 767 768 768 769 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 904 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 770 771 771 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 772 772 ... ... @@ -778,13 +778,13 @@ 778 778 ==== 2.3.3.9 Battery Output - BAT pin ==== 779 779 780 780 781 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 916 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 782 782 783 783 784 784 ==== 2.3.3.10 +5V Output ==== 785 785 786 786 787 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 922 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 788 788 789 789 The 5V output time can be controlled by AT Command. 790 790 ... ... @@ -806,9 +806,37 @@ 806 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 807 807 808 808 809 -==== 2.3.3.12 W orkingMOD ====944 +==== 2.3.3.12 PWM MOD ==== 810 810 811 811 947 +* ((( 948 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 949 +))) 950 +* ((( 951 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 952 +))) 953 + 954 + [[image:image-20230817183249-3.png||height="320" width="417"]] 955 + 956 +* ((( 957 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 958 +))) 959 +* ((( 960 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 961 +))) 962 +* ((( 963 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 964 + 965 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 966 + 967 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 968 + 969 +b) If the output duration is more than 30 seconds, better to use external power source. 970 +))) 971 + 972 +==== 2.3.3.13 Working MOD ==== 973 + 974 + 812 812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 813 813 814 814 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -824,8 +824,8 @@ 824 824 * 6: MOD7 825 825 * 7: MOD8 826 826 * 8: MOD9 990 +* 9: MOD10 827 827 828 - 829 829 == 2.4 Payload Decoder file == 830 830 831 831 ... ... @@ -839,23 +839,22 @@ 839 839 == 2.5 Frequency Plans == 840 840 841 841 842 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.1005 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 843 843 844 844 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 845 845 846 846 847 -= 3. Configure SN50v3-LB = 1010 += 3. Configure SN50v3-LB/LS = 848 848 849 849 == 3.1 Configure Methods == 850 850 851 851 852 -SN50v3-LB supports below configure method: 1015 +SN50v3-LB/LS supports below configure method: 853 853 854 854 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 855 855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 - 859 859 == 3.2 General Commands == 860 860 861 861 ... ... @@ -869,10 +869,10 @@ 869 869 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 870 870 871 871 872 -== 3.3 Commands special design for SN50v3-LB == 1034 +== 3.3 Commands special design for SN50v3-LB/LS == 873 873 874 874 875 -These commands only valid for SN50v3-LB, as below: 1037 +These commands only valid for SN50v3-LB/LS, as below: 876 876 877 877 878 878 === 3.3.1 Set Transmit Interval Time === ... ... @@ -883,7 +883,7 @@ 883 883 (% style="color:blue" %)**AT Command: AT+TDC** 884 884 885 885 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 886 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1048 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 887 887 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 888 888 30000 889 889 OK ... ... @@ -903,7 +903,6 @@ 903 903 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 904 904 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 905 905 906 - 907 907 === 3.3.2 Get Device Status === 908 908 909 909 ... ... @@ -919,10 +919,10 @@ 919 919 920 920 Feature, Set Interrupt mode for GPIO_EXIT. 921 921 922 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1083 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 923 923 924 924 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 925 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1086 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 926 926 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 927 927 0 928 928 OK ... ... @@ -952,7 +952,6 @@ 952 952 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 953 953 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 954 954 955 - 956 956 === 3.3.4 Set Power Output Duration === 957 957 958 958 ... ... @@ -967,7 +967,7 @@ 967 967 (% style="color:blue" %)**AT Command: AT+5VT** 968 968 969 969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 970 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 971 971 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 972 972 500(default) 973 973 OK ... ... @@ -985,7 +985,6 @@ 985 985 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 986 986 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 987 987 988 - 989 989 === 3.3.5 Set Weighing parameters === 990 990 991 991 ... ... @@ -994,9 +994,9 @@ 994 994 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 995 995 996 996 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 997 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1156 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 998 998 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 999 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1158 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1000 1000 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1001 1001 1002 1002 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1011,7 +1011,6 @@ 1011 1011 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1012 1012 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1013 1013 1014 - 1015 1015 === 3.3.6 Set Digital pulse count value === 1016 1016 1017 1017 ... ... @@ -1021,8 +1021,8 @@ 1021 1021 1022 1022 (% style="color:blue" %)**AT Command: AT+SETCNT** 1023 1023 1024 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1025 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1182 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1183 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1026 1026 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1027 1027 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1028 1028 ... ... @@ -1035,7 +1035,6 @@ 1035 1035 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1036 1036 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1037 1037 1038 - 1039 1039 === 3.3.7 Set Workmode === 1040 1040 1041 1041 ... ... @@ -1043,8 +1043,8 @@ 1043 1043 1044 1044 (% style="color:blue" %)**AT Command: AT+MOD** 1045 1045 1046 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1047 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1203 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1204 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1048 1048 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1049 1049 OK 1050 1050 ))) ... ... @@ -1060,12 +1060,97 @@ 1060 1060 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1061 1061 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1062 1062 1220 +=== 3.3.8 PWM setting === 1063 1063 1064 -= 4. Battery & Power Consumption = 1065 1065 1223 +Feature: Set the time acquisition unit for PWM input capture. 1066 1066 1067 - SN50v3-LBuse ER26500 + SPC1520 batterypack. See belowlink fordetail information about thebatteryinfohow to replace.1225 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1068 1068 1227 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1228 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1229 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1230 +0(default) 1231 +OK 1232 +))) 1233 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1234 +OK 1235 + 1236 +))) 1237 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1238 + 1239 +(% style="color:blue" %)**Downlink Command: 0x0C** 1240 + 1241 +Format: Command Code (0x0C) followed by 1 bytes. 1242 + 1243 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1244 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1245 + 1246 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1247 + 1248 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1249 + 1250 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1251 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1252 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1253 +0,0,0(default) 1254 +OK 1255 +))) 1256 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1257 +OK 1258 + 1259 +))) 1260 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1261 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1262 + 1263 + 1264 +)))|(% style="width:137px" %)((( 1265 +OK 1266 +))) 1267 + 1268 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1269 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1270 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1271 +AT+PWMOUT=a,b,c 1272 + 1273 + 1274 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1275 +Set PWM output time, output frequency and output duty cycle. 1276 + 1277 +((( 1278 + 1279 +))) 1280 + 1281 +((( 1282 + 1283 +))) 1284 +)))|(% style="width:242px" %)((( 1285 +a: Output time (unit: seconds) 1286 +The value ranges from 0 to 65535. 1287 +When a=65535, PWM will always output. 1288 +))) 1289 +|(% style="width:242px" %)((( 1290 +b: Output frequency (unit: HZ) 1291 +))) 1292 +|(% style="width:242px" %)((( 1293 +c: Output duty cycle (unit: %) 1294 +The value ranges from 0 to 100. 1295 +))) 1296 + 1297 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1298 + 1299 +Format: Command Code (0x0B01) followed by 6 bytes. 1300 + 1301 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1302 + 1303 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1304 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1305 + 1306 += 4. Battery & Power Cons = 1307 + 1308 + 1309 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1310 + 1069 1069 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1070 1070 1071 1071 ... ... @@ -1073,7 +1073,7 @@ 1073 1073 1074 1074 1075 1075 (% class="wikigeneratedid" %) 1076 -**User can change firmware SN50v3-LB to:** 1318 +**User can change firmware SN50v3-LB/LS to:** 1077 1077 1078 1078 * Change Frequency band/ region. 1079 1079 * Update with new features. ... ... @@ -1086,26 +1086,24 @@ 1086 1086 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1087 1087 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1088 1088 1089 - 1090 1090 = 6. FAQ = 1091 1091 1092 -== 6.1 Where can i find source code of SN50v3-LB? == 1333 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1093 1093 1094 1094 1095 1095 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1096 1096 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1097 1097 1339 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1098 1098 1099 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1100 1100 1101 - 1102 1102 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1103 1103 1104 1104 1105 -== 6.3 How to put several sensors to a SN50v3-LB? == 1345 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1106 1106 1107 1107 1108 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1348 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1109 1109 1110 1110 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1111 1111 ... ... @@ -1115,7 +1115,7 @@ 1115 1115 = 7. Order Info = 1116 1116 1117 1117 1118 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1358 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1119 1119 1120 1120 (% style="color:red" %)**XX**(%%): The default frequency band 1121 1121 ... ... @@ -1135,13 +1135,12 @@ 1135 1135 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1136 1136 * (% style="color:red" %)**NH**(%%): No Hole 1137 1137 1138 - 1139 1139 = 8. Packing Info = 1140 1140 1141 1141 1142 1142 (% style="color:#037691" %)**Package Includes**: 1143 1143 1144 -* SN50v3-LB LoRaWAN Generic Node 1383 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1145 1145 1146 1146 (% style="color:#037691" %)**Dimension and weight**: 1147 1147
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.8 KB - Content
- image-20240717141528-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +234.2 KB - Content