Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -41,7 +41,6 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 47 ... ... @@ -79,7 +79,6 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -107,7 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -126,7 +126,7 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-20230 610163213-1.png||height="404" width="699"]]126 +[[image:image-20230513102034-2.png]] 130 130 131 131 132 132 == 1.8 Mechanical == ... ... @@ -139,7 +139,7 @@ 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -== 1.9Hole Option ==139 +== Hole Option == 143 143 144 144 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -154,7 +154,7 @@ 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,7 +162,7 @@ 162 162 163 163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 164 164 165 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -211,7 +211,7 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 ... ... @@ -219,44 +219,44 @@ 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 231 231 (% style="color:#037691" %)**Frequency Band**: 232 232 233 -0x01: EU868 230 +*0x01: EU868 234 234 235 -0x02: US915 232 +*0x02: US915 236 236 237 -0x03: IN865 234 +*0x03: IN865 238 238 239 -0x04: AU915 236 +*0x04: AU915 240 240 241 -0x05: KZ865 238 +*0x05: KZ865 242 242 243 -0x06: RU864 240 +*0x06: RU864 244 244 245 -0x07: AS923 242 +*0x07: AS923 246 246 247 -0x08: AS923-1 244 +*0x08: AS923-1 248 248 249 -0x09: AS923-2 246 +*0x09: AS923-2 250 250 251 -0x0a: AS923-3 248 +*0x0a: AS923-3 252 252 253 -0x0b: CN470 250 +*0x0b: CN470 254 254 255 -0x0c: EU433 252 +*0x0c: EU433 256 256 257 -0x0d: KR920 254 +*0x0d: KR920 258 258 259 -0x0e: MA869 256 +*0x0e: MA869 260 260 261 261 262 262 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -280,22 +280,19 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 284 284 285 285 For example: 286 286 287 - (% style="color:blue" %)**AT+MOD=2 **(%%)284 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 288 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 +1. All modes share the same Payload Explanation from HERE. 291 +1. By default, the device will send an uplink message every 20 minutes. 293 293 294 -2. All modes share the same Payload Explanation from HERE. 295 - 296 -3. By default, the device will send an uplink message every 20 minutes. 297 - 298 - 299 299 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 300 300 301 301 ... ... @@ -302,8 +302,8 @@ 302 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 303 303 304 304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**306 -|Value|Bat|(% style="width:191px" %)((( 299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 +|**Value**|Bat|(% style="width:191px" %)((( 307 307 Temperature(DS18B20)(PC13) 308 308 )))|(% style="width:78px" %)((( 309 309 ADC(PA4) ... ... @@ -320,12 +320,11 @@ 320 320 321 321 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 322 322 323 - 324 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 325 325 326 326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**328 -|Value|BAT|(% style="width:196px" %)((( 320 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 321 +|**Value**|BAT|(% style="width:196px" %)((( 329 329 Temperature(DS18B20)(PC13) 330 330 )))|(% style="width:87px" %)((( 331 331 ADC(PA4) ... ... @@ -332,30 +332,27 @@ 332 332 )))|(% style="width:189px" %)((( 333 333 Digital in(PB15) & Digital Interrupt(PA8) 334 334 )))|(% style="width:208px" %)((( 335 -Distance measure by: 328 +Distance measure by:1) LIDAR-Lite V3HP 336 336 Or 2) Ultrasonic Sensor 337 337 )))|(% style="width:117px" %)Reserved 338 338 339 339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 340 340 341 - 342 342 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 343 343 344 344 [[image:image-20230512173758-5.png||height="563" width="712"]] 345 345 346 - 347 347 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 348 348 349 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**340 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 350 350 351 351 [[image:image-20230512173903-6.png||height="596" width="715"]] 352 352 353 - 354 354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 355 355 356 356 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 357 357 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 358 -|Value|BAT|(% style="width:183px" %)((( 348 +|**Value**|BAT|(% style="width:183px" %)((( 359 359 Temperature(DS18B20)(PC13) 360 360 )))|(% style="width:173px" %)((( 361 361 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -363,36 +363,34 @@ 363 363 ADC(PA4) 364 364 )))|(% style="width:323px" %)((( 365 365 Distance measure by:1)TF-Mini plus LiDAR 366 -Or 2) TF-Luna LiDAR 356 +Or 357 +2) TF-Luna LiDAR 367 367 )))|(% style="width:188px" %)Distance signal strength 368 368 369 369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 370 370 371 - 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**364 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 375 375 376 376 [[image:image-20230512180609-7.png||height="555" width="802"]] 377 377 378 - 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 382 382 383 -[[image:image-20230 610170047-1.png||height="452" width="799"]]372 +[[image:image-20230513105207-4.png||height="469" width="802"]] 384 384 385 385 386 386 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 387 387 388 - 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1395 -|Value|(% style="width:68px" %)((( 382 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 383 +|**Value**|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( 398 398 ADC2(PA5) ... ... @@ -416,7 +416,7 @@ 416 416 417 417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 419 -|Value|BAT|(% style="width:186px" %)((( 407 +|**Value**|BAT|(% style="width:186px" %)((( 420 420 Temperature1(DS18B20)(PC13) 421 421 )))|(% style="width:82px" %)((( 422 422 ADC(PA4) ... ... @@ -427,29 +427,24 @@ 427 427 428 428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 429 429 430 - 431 431 [[image:image-20230513134006-1.png||height="559" width="736"]] 432 432 433 433 434 434 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 435 435 436 - 437 437 [[image:image-20230512164658-2.png||height="532" width="729"]] 438 438 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.427 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 428 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 443 1. ((( 444 444 Weight has 4 bytes, the unit is g. 445 - 446 - 447 - 448 448 ))) 449 449 450 450 For example: 451 451 452 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**435 +**AT+GETSENSORVALUE =0** 453 453 454 454 Response: Weight is 401 g 455 455 ... ... @@ -459,21 +459,21 @@ 459 459 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 460 460 **Size(bytes)** 461 461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 462 -|Value|BAT|(% style="width:193px" %)((( 463 -Temperature(DS18B20)(PC13) 445 +|**Value**|BAT|(% style="width:193px" %)((( 446 +Temperature(DS18B20) 447 +(PC13) 464 464 )))|(% style="width:85px" %)((( 465 465 ADC(PA4) 466 466 )))|(% style="width:186px" %)((( 467 -Digital in(PB15) & Digital Interrupt(PA8) 451 +Digital in(PB15) & 452 +Digital Interrupt(PA8) 468 468 )))|(% style="width:100px" %)Weight 469 469 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 - 477 477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 478 478 479 479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -480,12 +480,11 @@ 480 480 481 481 [[image:image-20230512181814-9.png||height="543" width="697"]] 482 482 466 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 483 483 484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 - 486 486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**488 -|Value|BAT|(% style="width:256px" %)((( 469 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 470 +|**Value**|BAT|(% style="width:256px" %)((( 489 489 Temperature(DS18B20)(PC13) 490 490 )))|(% style="width:108px" %)((( 491 491 ADC(PA4) ... ... @@ -500,12 +500,11 @@ 500 500 501 501 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 502 502 503 - 504 504 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 505 505 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 506 **Size(bytes)** 507 507 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 508 -|Value|BAT|(% style="width:188px" %)((( 489 +|**Value**|BAT|(% style="width:188px" %)((( 509 509 Temperature(DS18B20) 510 510 (PC13) 511 511 )))|(% style="width:83px" %)((( ... ... @@ -516,15 +516,13 @@ 516 516 517 517 [[image:image-20230513111203-7.png||height="324" width="975"]] 518 518 519 - 520 520 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 521 521 522 - 523 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 525 525 **Size(bytes)** 526 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2527 -|Value|BAT|(% style="width:207px" %)((( 505 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 506 +|**Value**|BAT|(% style="width:207px" %)((( 528 528 Temperature(DS18B20) 529 529 (PC13) 530 530 )))|(% style="width:94px" %)((( ... ... @@ -542,23 +542,22 @@ 542 542 543 543 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 544 544 545 - 546 546 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 547 547 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 548 548 **Size(bytes)** 549 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4550 -|Value|BAT|((( 551 -Temperature 552 -( DS18B20)(PC13)527 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 528 +|**Value**|BAT|((( 529 +Temperature1(DS18B20) 530 +(PC13) 553 553 )))|((( 554 -Temperature2 555 -( DS18B20)(PB9)532 +Temperature2(DS18B20) 533 +(PB9) 556 556 )))|((( 557 557 Digital Interrupt 558 558 (PB15) 559 559 )))|(% style="width:193px" %)((( 560 -Temperature3 561 -( DS18B20)(PB8)538 +Temperature3(DS18B20) 539 +(PB8) 562 562 )))|(% style="width:78px" %)((( 563 563 Count1(PA8) 564 564 )))|(% style="width:78px" %)((( ... ... @@ -583,9 +583,9 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 564 + 586 586 === 2.3.3 Decode payload === 587 587 588 - 589 589 While using TTN V3 network, you can add the payload format to decode the payload. 590 590 591 591 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -592,14 +592,13 @@ 592 592 593 593 The payload decoder function for TTN V3 are here: 594 594 595 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]573 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 596 597 597 598 598 ==== 2.3.3.1 Battery Info ==== 599 599 578 +Check the battery voltage for SN50v3. 600 600 601 -Check the battery voltage for SN50v3-LB. 602 - 603 603 Ex1: 0x0B45 = 2885mV 604 604 605 605 Ex2: 0x0B49 = 2889mV ... ... @@ -607,16 +607,14 @@ 607 607 608 608 ==== 2.3.3.2 Temperature (DS18B20) ==== 609 609 610 - 611 611 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 612 612 613 -More DS18B20 can check the [[3 DS18B20 mode>> ||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]589 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 614 614 615 615 (% style="color:blue" %)**Connection:** 616 616 617 617 [[image:image-20230512180718-8.png||height="538" width="647"]] 618 618 619 - 620 620 (% style="color:blue" %)**Example**: 621 621 622 622 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -628,7 +628,6 @@ 628 628 629 629 ==== 2.3.3.3 Digital Input ==== 630 630 631 - 632 632 The digital input for pin PB15, 633 633 634 634 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -638,38 +638,28 @@ 638 638 ((( 639 639 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 640 640 641 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 642 - 643 - 615 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 644 644 ))) 645 645 646 646 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 647 647 620 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 648 648 649 - The measuringrange of theADCis onlyabout0.1Vto1.1VThe voltage resolution is about0.24mv.622 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 650 650 651 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 652 - 653 653 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 654 654 626 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 655 655 656 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 657 657 658 - 659 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 660 - 661 -[[image:image-20230811113449-1.png||height="370" width="608"]] 662 - 663 663 ==== 2.3.3.5 Digital Interrupt ==== 664 664 631 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 665 665 666 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 667 - 668 668 (% style="color:blue" %)** Interrupt connection method:** 669 669 670 670 [[image:image-20230513105351-5.png||height="147" width="485"]] 671 671 672 - 673 673 (% style="color:blue" %)**Example to use with door sensor :** 674 674 675 675 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -676,23 +676,22 @@ 676 676 677 677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 678 678 679 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.643 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 680 680 645 +(% style="color:blue" %)** Below is the installation example:** 681 681 682 - (%style="color:blue"%)**Belowisthe installationexample:**647 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 683 683 684 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 685 - 686 686 * ((( 687 -One pin to SN50v3 -LB's PA8 pin650 +One pin to SN50_v3's PA8 pin 688 688 ))) 689 689 * ((( 690 -The other pin to SN50v3 -LB's VDD pin653 +The other pin to SN50_v3's VDD pin 691 691 ))) 692 692 693 693 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 694 694 695 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.658 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 696 696 697 697 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 698 698 ... ... @@ -704,32 +704,29 @@ 704 704 705 705 The command is: 706 706 707 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 670 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 708 708 709 709 Below shows some screen captures in TTN V3: 710 710 711 711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 712 712 676 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 713 714 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 715 - 716 716 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 717 717 718 718 719 719 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 720 720 721 - 722 722 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 723 723 724 724 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 725 725 726 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**687 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 727 727 728 - 729 729 Below is the connection to SHT20/ SHT31. The connection is as below: 730 730 731 -[[image:image-20230610170152-2.png||height="501" width="846"]] 732 732 692 +[[image:image-20230513103633-3.png||height="448" width="716"]] 733 733 734 734 The device will be able to get the I2C sensor data now and upload to IoT Server. 735 735 ... ... @@ -748,16 +748,14 @@ 748 748 749 749 ==== 2.3.3.7 Distance Reading ==== 750 750 751 - 752 752 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 753 753 754 754 755 755 ==== 2.3.3.8 Ultrasonic Sensor ==== 756 756 757 - 758 758 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 759 759 760 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.718 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 761 761 762 762 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 763 763 ... ... @@ -765,9 +765,8 @@ 765 765 766 766 [[image:image-20230512173903-6.png||height="596" width="715"]] 767 767 726 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 768 769 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 - 771 771 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 772 772 773 773 **Example:** ... ... @@ -775,17 +775,16 @@ 775 775 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 776 776 777 777 735 + 778 778 ==== 2.3.3.9 Battery Output - BAT pin ==== 779 779 738 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 780 780 781 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 782 782 783 - 784 784 ==== 2.3.3.10 +5V Output ==== 785 785 743 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 786 786 787 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 788 - 789 789 The 5V output time can be controlled by AT Command. 790 790 791 791 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -792,23 +792,21 @@ 792 792 793 793 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 794 794 795 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.751 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 796 796 797 797 754 + 798 798 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 799 799 800 - 801 801 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 802 802 803 803 [[image:image-20230512172447-4.png||height="416" width="712"]] 804 804 805 - 806 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 807 807 808 808 809 809 ==== 2.3.3.12 Working MOD ==== 810 810 811 - 812 812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 813 813 814 814 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -836,6 +836,7 @@ 836 836 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 837 837 838 838 793 + 839 839 == 2.5 Frequency Plans == 840 840 841 841 ... ... @@ -855,7 +855,6 @@ 855 855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 - 859 859 == 3.2 General Commands == 860 860 861 861 ... ... @@ -872,18 +872,17 @@ 872 872 == 3.3 Commands special design for SN50v3-LB == 873 873 874 874 875 -These commands only valid for S N50v3-LB, as below:829 +These commands only valid for S31x-LB, as below: 876 876 877 877 878 878 === 3.3.1 Set Transmit Interval Time === 879 879 880 - 881 881 Feature: Change LoRaWAN End Node Transmit Interval. 882 882 883 883 (% style="color:blue" %)**AT Command: AT+TDC** 884 884 885 885 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 886 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**839 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 887 887 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 888 888 30000 889 889 OK ... ... @@ -906,23 +906,21 @@ 906 906 907 907 === 3.3.2 Get Device Status === 908 908 909 - 910 910 Send a LoRaWAN downlink to ask the device to send its status. 911 911 912 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **864 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 913 913 914 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.866 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 915 915 916 916 917 917 === 3.3.3 Set Interrupt Mode === 918 918 919 - 920 920 Feature, Set Interrupt mode for GPIO_EXIT. 921 921 922 922 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 923 923 924 924 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 925 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**876 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 926 926 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 927 927 0 928 928 OK ... ... @@ -937,6 +937,7 @@ 937 937 )))|(% style="width:157px" %)OK 938 938 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 939 939 Set Transmit Interval 891 + 940 940 trigger by rising edge. 941 941 )))|(% style="width:157px" %)OK 942 942 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -955,7 +955,6 @@ 955 955 956 956 === 3.3.4 Set Power Output Duration === 957 957 958 - 959 959 Control the output duration 5V . Before each sampling, device will 960 960 961 961 ~1. first enable the power output to external sensor, ... ... @@ -967,7 +967,7 @@ 967 967 (% style="color:blue" %)**AT Command: AT+5VT** 968 968 969 969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 970 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 971 971 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 972 972 500(default) 973 973 OK ... ... @@ -988,13 +988,12 @@ 988 988 989 989 === 3.3.5 Set Weighing parameters === 990 990 991 - 992 992 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 993 993 994 994 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 995 995 996 996 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 997 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**947 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 998 998 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 999 999 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1000 1000 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1014,7 +1014,6 @@ 1014 1014 1015 1015 === 3.3.6 Set Digital pulse count value === 1016 1016 1017 - 1018 1018 Feature: Set the pulse count value. 1019 1019 1020 1020 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1022,7 +1022,7 @@ 1022 1022 (% style="color:blue" %)**AT Command: AT+SETCNT** 1023 1023 1024 1024 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1025 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1026 1026 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1027 1027 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1028 1028 ... ... @@ -1038,13 +1038,12 @@ 1038 1038 1039 1039 === 3.3.7 Set Workmode === 1040 1040 1041 - 1042 1042 Feature: Switch working mode. 1043 1043 1044 1044 (% style="color:blue" %)**AT Command: AT+MOD** 1045 1045 1046 1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1047 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**995 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1048 1048 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1049 1049 OK 1050 1050 ))) ... ... @@ -1073,45 +1073,27 @@ 1073 1073 1074 1074 1075 1075 (% class="wikigeneratedid" %) 1076 - **User can change firmware SN50v3-LB to:**1024 +User can change firmware SN50v3-LB to: 1077 1077 1078 1078 * Change Frequency band/ region. 1079 1079 * Update with new features. 1080 1080 * Fix bugs. 1081 1081 1082 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1030 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1083 1083 1084 -**Methods to Update Firmware:** 1085 1085 1086 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1087 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1033 +Methods to Update Firmware: 1088 1088 1035 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1036 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1089 1089 1090 1090 = 6. FAQ = 1091 1091 1092 1092 == 6.1 Where can i find source code of SN50v3-LB? == 1093 1093 1094 - 1095 1095 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1096 1096 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1097 1097 1098 - 1099 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1100 - 1101 - 1102 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1103 - 1104 - 1105 -== 6.3 How to put several sensors to a SN50v3-LB? == 1106 - 1107 - 1108 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1109 - 1110 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1111 - 1112 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1113 - 1114 - 1115 1115 = 7. Order Info = 1116 1116 1117 1117 ... ... @@ -1135,10 +1135,8 @@ 1135 1135 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1136 1136 * (% style="color:red" %)**NH**(%%): No Hole 1137 1137 1138 - 1139 1139 = 8. Packing Info = 1140 1140 1141 - 1142 1142 (% style="color:#037691" %)**Package Includes**: 1143 1143 1144 1144 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content