<
From version < 59.1 >
edited by Saxer Lin
on 2023/08/11 11:35
To version < 43.42 >
edited by Xiaoling
on 2023/05/16 15:05
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -30,7 +30,6 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,7 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,7 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -139,7 +139,7 @@
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -== 1.9 Hole Option ==
138 +== Hole Option ==
143 143  
144 144  
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -219,44 +219,44 @@
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 220  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -0x01: EU868
229 +*0x01: EU868
234 234  
235 -0x02: US915
231 +*0x02: US915
236 236  
237 -0x03: IN865
233 +*0x03: IN865
238 238  
239 -0x04: AU915
235 +*0x04: AU915
240 240  
241 -0x05: KZ865
237 +*0x05: KZ865
242 242  
243 -0x06: RU864
239 +*0x06: RU864
244 244  
245 -0x07: AS923
241 +*0x07: AS923
246 246  
247 -0x08: AS923-1
243 +*0x08: AS923-1
248 248  
249 -0x09: AS923-2
245 +*0x09: AS923-2
250 250  
251 -0x0a: AS923-3
247 +*0x0a: AS923-3
252 252  
253 -0x0b: CN470
249 +*0x0b: CN470
254 254  
255 -0x0c: EU433
251 +*0x0c: EU433
256 256  
257 -0x0d: KR920
253 +*0x0d: KR920
258 258  
259 -0x0e: MA869
255 +*0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -280,22 +280,19 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 284  
285 285  For example:
286 286  
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 +1. All modes share the same Payload Explanation from HERE.
290 +1. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -2. All modes share the same Payload Explanation from HERE.
295 -
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 299  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 300  
301 301  
... ... @@ -302,8 +302,8 @@
302 302  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 303  
304 304  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 -|Value|Bat|(% style="width:191px" %)(((
298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 +|**Value**|Bat|(% style="width:191px" %)(((
307 307  Temperature(DS18B20)(PC13)
308 308  )))|(% style="width:78px" %)(((
309 309  ADC(PA4)
... ... @@ -320,12 +320,11 @@
320 320  
321 321  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 322  
323 -
324 324  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 -|Value|BAT|(% style="width:196px" %)(((
319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 +|**Value**|BAT|(% style="width:196px" %)(((
329 329  Temperature(DS18B20)(PC13)
330 330  )))|(% style="width:87px" %)(((
331 331  ADC(PA4)
... ... @@ -332,30 +332,27 @@
332 332  )))|(% style="width:189px" %)(((
333 333  Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 -Distance measure by: 1) LIDAR-Lite V3HP
327 +Distance measure by:1) LIDAR-Lite V3HP
336 336  Or 2) Ultrasonic Sensor
337 337  )))|(% style="width:117px" %)Reserved
338 338  
339 339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340 340  
341 -
342 342  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343 343  
344 344  [[image:image-20230512173758-5.png||height="563" width="712"]]
345 345  
346 -
347 347  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348 348  
349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
350 350  
351 351  [[image:image-20230512173903-6.png||height="596" width="715"]]
352 352  
353 -
354 354  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355 355  
356 356  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 -|Value|BAT|(% style="width:183px" %)(((
346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 +|**Value**|BAT|(% style="width:183px" %)(((
359 359  Temperature(DS18B20)(PC13)
360 360  )))|(% style="width:173px" %)(((
361 361  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -363,36 +363,34 @@
363 363  ADC(PA4)
364 364  )))|(% style="width:323px" %)(((
365 365  Distance measure by:1)TF-Mini plus LiDAR
366 -Or 2) TF-Luna LiDAR
355 +Or 
356 +2) TF-Luna LiDAR
367 367  )))|(% style="width:188px" %)Distance signal  strength
368 368  
369 369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370 370  
371 -
372 372  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 373  
374 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375 375  
376 376  [[image:image-20230512180609-7.png||height="555" width="802"]]
377 377  
378 -
379 379  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 380  
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382 382  
383 -[[image:image-20230610170047-1.png||height="452" width="799"]]
371 +[[image:image-20230513105207-4.png||height="469" width="802"]]
384 384  
385 385  
386 386  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387 387  
388 -
389 389  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390 390  
391 391  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 392  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 -|Value|(% style="width:68px" %)(((
381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 +|**Value**|(% style="width:68px" %)(((
396 396  ADC1(PA4)
397 397  )))|(% style="width:75px" %)(((
398 398  ADC2(PA5)
... ... @@ -415,8 +415,8 @@
415 415  This mode has total 11 bytes. As shown below:
416 416  
417 417  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 -|Value|BAT|(% style="width:186px" %)(((
405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 +|**Value**|BAT|(% style="width:186px" %)(((
420 420  Temperature1(DS18B20)(PC13)
421 421  )))|(% style="width:82px" %)(((
422 422  ADC(PA4)
... ... @@ -427,29 +427,24 @@
427 427  
428 428  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429 429  
430 -
431 431  [[image:image-20230513134006-1.png||height="559" width="736"]]
432 432  
433 433  
434 434  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435 435  
436 -
437 437  [[image:image-20230512164658-2.png||height="532" width="729"]]
438 438  
439 439  Each HX711 need to be calibrated before used. User need to do below two steps:
440 440  
441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 443  1. (((
444 444  Weight has 4 bytes, the unit is g.
445 -
446 -
447 -
448 448  )))
449 449  
450 450  For example:
451 451  
452 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
434 +**AT+GETSENSORVALUE =0**
453 453  
454 454  Response:  Weight is 401 g
455 455  
... ... @@ -459,21 +459,21 @@
459 459  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 460  **Size(bytes)**
461 461  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 -|Value|BAT|(% style="width:193px" %)(((
463 -Temperature(DS18B20)(PC13)
444 +|**Value**|BAT|(% style="width:193px" %)(((
445 +Temperature(DS18B20)
446 +(PC13)
464 464  )))|(% style="width:85px" %)(((
465 465  ADC(PA4)
466 466  )))|(% style="width:186px" %)(((
467 -Digital in(PB15) & Digital Interrupt(PA8)
450 +Digital in(PB15) &
451 +Digital Interrupt(PA8)
468 468  )))|(% style="width:100px" %)Weight
469 469  
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471 471  
472 472  
473 -
474 474  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475 475  
476 -
477 477  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478 478  
479 479  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -480,12 +480,11 @@
480 480  
481 481  [[image:image-20230512181814-9.png||height="543" width="697"]]
482 482  
465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
483 483  
484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485 -
486 486  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 -|Value|BAT|(% style="width:256px" %)(((
468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 +|**Value**|BAT|(% style="width:256px" %)(((
489 489  Temperature(DS18B20)(PC13)
490 490  )))|(% style="width:108px" %)(((
491 491  ADC(PA4)
... ... @@ -500,12 +500,11 @@
500 500  
501 501  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
502 502  
503 -
504 504  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 505  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 506  **Size(bytes)**
507 507  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 -|Value|BAT|(% style="width:188px" %)(((
488 +|**Value**|BAT|(% style="width:188px" %)(((
509 509  Temperature(DS18B20)
510 510  (PC13)
511 511  )))|(% style="width:83px" %)(((
... ... @@ -516,15 +516,13 @@
516 516  
517 517  [[image:image-20230513111203-7.png||height="324" width="975"]]
518 518  
519 -
520 520  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
521 521  
522 -
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 524  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 -|Value|BAT|(% style="width:207px" %)(((
504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 +|**Value**|BAT|(% style="width:207px" %)(((
528 528  Temperature(DS18B20)
529 529  (PC13)
530 530  )))|(% style="width:94px" %)(((
... ... @@ -542,23 +542,22 @@
542 542  
543 543  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 544  
545 -
546 546  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 547  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
548 548  **Size(bytes)**
549 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 -|Value|BAT|(((
551 -Temperature
552 -(DS18B20)(PC13)
526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 +|**Value**|BAT|(((
528 +Temperature1(DS18B20)
529 +(PC13)
553 553  )))|(((
554 -Temperature2
555 -(DS18B20)(PB9)
531 +Temperature2(DS18B20)
532 +(PB9)
556 556  )))|(((
557 557  Digital Interrupt
558 558  (PB15)
559 559  )))|(% style="width:193px" %)(((
560 -Temperature3
561 -(DS18B20)(PB8)
537 +Temperature3(DS18B20)
538 +(PB8)
562 562  )))|(% style="width:78px" %)(((
563 563  Count1(PA8)
564 564  )))|(% style="width:78px" %)(((
... ... @@ -569,11 +569,11 @@
569 569  
570 570  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
571 571  
572 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
549 +(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
551 +(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
553 +(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
577 577  
578 578  
579 579  (% style="color:blue" %)**AT+SETCNT=aa,bb** 
... ... @@ -583,9 +583,9 @@
583 583  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
563 +
586 586  === 2.3.3  ​Decode payload ===
587 587  
588 -
589 589  While using TTN V3 network, you can add the payload format to decode the payload.
590 590  
591 591  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -592,14 +592,13 @@
592 592  
593 593  The payload decoder function for TTN V3 are here:
594 594  
595 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
572 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 596  
597 597  
598 598  ==== 2.3.3.1 Battery Info ====
599 599  
577 +Check the battery voltage for SN50v3.
600 600  
601 -Check the battery voltage for SN50v3-LB.
602 -
603 603  Ex1: 0x0B45 = 2885mV
604 604  
605 605  Ex2: 0x0B49 = 2889mV
... ... @@ -607,16 +607,14 @@
607 607  
608 608  ==== 2.3.3.2  Temperature (DS18B20) ====
609 609  
610 -
611 611  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
612 612  
613 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
588 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
614 614  
615 615  (% style="color:blue" %)**Connection:**
616 616  
617 617  [[image:image-20230512180718-8.png||height="538" width="647"]]
618 618  
619 -
620 620  (% style="color:blue" %)**Example**:
621 621  
622 622  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -628,7 +628,6 @@
628 628  
629 629  ==== 2.3.3.3 Digital Input ====
630 630  
631 -
632 632  The digital input for pin PB15,
633 633  
634 634  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -638,38 +638,28 @@
638 638  (((
639 639  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
640 640  
641 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
642 -
643 -
614 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
644 644  )))
645 645  
646 646  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
647 647  
619 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
648 648  
649 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
621 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
650 650  
651 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
652 -
653 653  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
654 654  
625 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
655 655  
656 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
657 657  
658 -
659 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
660 -
661 -[[image:image-20230811113449-1.png||height="370" width="608"]]
662 -
663 663  ==== 2.3.3.5 Digital Interrupt ====
664 664  
630 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
665 665  
666 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
632 +(% style="color:blue" %)**~ Interrupt connection method:**
667 667  
668 -(% style="color:blue" %)** Interrupt connection method:**
669 -
670 670  [[image:image-20230513105351-5.png||height="147" width="485"]]
671 671  
672 -
673 673  (% style="color:blue" %)**Example to use with door sensor :**
674 674  
675 675  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -676,23 +676,22 @@
676 676  
677 677  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
678 678  
679 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
642 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
680 680  
644 +(% style="color:blue" %)**~ Below is the installation example:**
681 681  
682 -(% style="color:blue" %)**Below is the installation example:**
646 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
683 683  
684 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685 -
686 686  * (((
687 -One pin to SN50v3-LB's PA8 pin
649 +One pin to SN50_v3's PA8 pin
688 688  )))
689 689  * (((
690 -The other pin to SN50v3-LB's VDD pin
652 +The other pin to SN50_v3's VDD pin
691 691  )))
692 692  
693 693  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
694 694  
695 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
657 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696 696  
697 697  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
698 698  
... ... @@ -704,32 +704,29 @@
704 704  
705 705  The command is:
706 706  
707 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
669 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 708  
709 709  Below shows some screen captures in TTN V3:
710 710  
711 711  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
712 712  
675 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
713 713  
714 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 -
716 716  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
717 717  
718 718  
719 719  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
720 720  
721 -
722 722  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
723 723  
724 724  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
725 725  
726 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
686 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
727 727  
728 -
729 729  Below is the connection to SHT20/ SHT31. The connection is as below:
730 730  
731 -[[image:image-20230610170152-2.png||height="501" width="846"]]
732 732  
691 +[[image:image-20230513103633-3.png||height="448" width="716"]]
733 733  
734 734  The device will be able to get the I2C sensor data now and upload to IoT Server.
735 735  
... ... @@ -748,26 +748,23 @@
748 748  
749 749  ==== 2.3.3.7  ​Distance Reading ====
750 750  
751 -
752 752  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
753 753  
754 754  
755 755  ==== 2.3.3.8 Ultrasonic Sensor ====
756 756  
757 -
758 758  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759 759  
760 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
717 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 761  
762 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
719 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
763 763  
764 764  The picture below shows the connection:
765 765  
766 766  [[image:image-20230512173903-6.png||height="596" width="715"]]
767 767  
725 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
768 768  
769 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770 -
771 771  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772 772  
773 773  **Example:**
... ... @@ -775,17 +775,16 @@
775 775  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
776 776  
777 777  
734 +
778 778  ==== 2.3.3.9  Battery Output - BAT pin ====
779 779  
737 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
780 780  
781 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
782 782  
783 -
784 784  ==== 2.3.3.10  +5V Output ====
785 785  
742 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
786 786  
787 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
788 -
789 789  The 5V output time can be controlled by AT Command.
790 790  
791 791  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -792,23 +792,21 @@
792 792  
793 793  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
794 794  
795 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
750 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796 796  
797 797  
753 +
798 798  ==== 2.3.3.11  BH1750 Illumination Sensor ====
799 799  
800 -
801 801  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
802 802  
803 803  [[image:image-20230512172447-4.png||height="416" width="712"]]
804 804  
805 -
806 806  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
807 807  
808 808  
809 809  ==== 2.3.3.12  Working MOD ====
810 810  
811 -
812 812  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813 813  
814 814  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -826,6 +826,7 @@
826 826  * 8: MOD9
827 827  
828 828  
782 +
829 829  == 2.4 Payload Decoder file ==
830 830  
831 831  
... ... @@ -836,6 +836,7 @@
836 836  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
837 837  
838 838  
793 +
839 839  == 2.5 Frequency Plans ==
840 840  
841 841  
... ... @@ -855,7 +855,6 @@
855 855  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
856 856  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857 857  
858 -
859 859  == 3.2 General Commands ==
860 860  
861 861  
... ... @@ -872,18 +872,17 @@
872 872  == 3.3 Commands special design for SN50v3-LB ==
873 873  
874 874  
875 -These commands only valid for SN50v3-LB, as below:
829 +These commands only valid for S31x-LB, as below:
876 876  
877 877  
878 878  === 3.3.1 Set Transmit Interval Time ===
879 879  
880 -
881 881  Feature: Change LoRaWAN End Node Transmit Interval.
882 882  
883 883  (% style="color:blue" %)**AT Command: AT+TDC**
884 884  
885 885  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
886 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
839 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
887 887  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
888 888  30000
889 889  OK
... ... @@ -904,25 +904,24 @@
904 904  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
905 905  
906 906  
860 +
907 907  === 3.3.2 Get Device Status ===
908 908  
909 -
910 910  Send a LoRaWAN downlink to ask the device to send its status.
911 911  
912 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
865 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
913 913  
914 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
867 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
915 915  
916 916  
917 917  === 3.3.3 Set Interrupt Mode ===
918 918  
919 -
920 920  Feature, Set Interrupt mode for GPIO_EXIT.
921 921  
922 922  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
923 923  
924 924  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
925 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
877 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
926 926  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
927 927  0
928 928  OK
... ... @@ -937,6 +937,7 @@
937 937  )))|(% style="width:157px" %)OK
938 938  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
939 939  Set Transmit Interval
892 +
940 940  trigger by rising edge.
941 941  )))|(% style="width:157px" %)OK
942 942  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -953,9 +953,9 @@
953 953  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
954 954  
955 955  
909 +
956 956  === 3.3.4 Set Power Output Duration ===
957 957  
958 -
959 959  Control the output duration 5V . Before each sampling, device will
960 960  
961 961  ~1. first enable the power output to external sensor,
... ... @@ -967,7 +967,7 @@
967 967  (% style="color:blue" %)**AT Command: AT+5VT**
968 968  
969 969  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
970 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
971 971  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
972 972  500(default)
973 973  OK
... ... @@ -986,15 +986,15 @@
986 986  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
987 987  
988 988  
942 +
989 989  === 3.3.5 Set Weighing parameters ===
990 990  
991 -
992 992  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
993 993  
994 994  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
995 995  
996 996  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
950 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
998 998  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
999 999  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1000 1000  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1012,9 +1012,9 @@
1012 1012  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1013 1013  
1014 1014  
968 +
1015 1015  === 3.3.6 Set Digital pulse count value ===
1016 1016  
1017 -
1018 1018  Feature: Set the pulse count value.
1019 1019  
1020 1020  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1022,7 +1022,7 @@
1022 1022  (% style="color:blue" %)**AT Command: AT+SETCNT**
1023 1023  
1024 1024  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1025 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
978 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1026 1026  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1027 1027  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1028 1028  
... ... @@ -1036,15 +1036,15 @@
1036 1036  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1037 1037  
1038 1038  
992 +
1039 1039  === 3.3.7 Set Workmode ===
1040 1040  
1041 -
1042 1042  Feature: Switch working mode.
1043 1043  
1044 1044  (% style="color:blue" %)**AT Command: AT+MOD**
1045 1045  
1046 1046  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1048 1048  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1049 1049  OK
1050 1050  )))
... ... @@ -1061,6 +1061,7 @@
1061 1061  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1062 1062  
1063 1063  
1017 +
1064 1064  = 4. Battery & Power Consumption =
1065 1065  
1066 1066  
... ... @@ -1073,45 +1073,27 @@
1073 1073  
1074 1074  
1075 1075  (% class="wikigeneratedid" %)
1076 -**User can change firmware SN50v3-LB to:**
1030 +User can change firmware SN50v3-LB to:
1077 1077  
1078 1078  * Change Frequency band/ region.
1079 1079  * Update with new features.
1080 1080  * Fix bugs.
1081 1081  
1082 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1036 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1083 1083  
1084 -**Methods to Update Firmware:**
1085 1085  
1086 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1087 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1039 +Methods to Update Firmware:
1088 1088  
1041 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1042 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1089 1089  
1090 1090  = 6. FAQ =
1091 1091  
1092 1092  == 6.1 Where can i find source code of SN50v3-LB? ==
1093 1093  
1094 -
1095 1095  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1096 1096  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1097 1097  
1098 -
1099 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1100 -
1101 -
1102 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1103 -
1104 -
1105 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1106 -
1107 -
1108 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1109 -
1110 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1111 -
1112 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1113 -
1114 -
1115 1115  = 7. Order Info =
1116 1116  
1117 1117  
... ... @@ -1135,10 +1135,8 @@
1135 1135  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1136 1136  * (% style="color:red" %)**NH**(%%): No Hole
1137 1137  
1138 -
1139 1139  = 8. ​Packing Info =
1140 1140  
1141 -
1142 1142  (% style="color:#037691" %)**Package Includes**:
1143 1143  
1144 1144  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0