<
From version < 59.1 >
edited by Saxer Lin
on 2023/08/11 11:35
To version < 34.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111231-8.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,10 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 -
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,10 +79,8 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 -
86 86  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87 87  
88 88  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,7 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -139,9 +139,8 @@
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -== 1.9 Hole Option ==
138 +== Hole Option ==
143 143  
144 -
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 146  
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -219,44 +219,44 @@
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 220  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -0x01: EU868
228 +*0x01: EU868
234 234  
235 -0x02: US915
230 +*0x02: US915
236 236  
237 -0x03: IN865
232 +*0x03: IN865
238 238  
239 -0x04: AU915
234 +*0x04: AU915
240 240  
241 -0x05: KZ865
236 +*0x05: KZ865
242 242  
243 -0x06: RU864
238 +*0x06: RU864
244 244  
245 -0x07: AS923
240 +*0x07: AS923
246 246  
247 -0x08: AS923-1
242 +*0x08: AS923-1
248 248  
249 -0x09: AS923-2
244 +*0x09: AS923-2
250 250  
251 -0x0a: AS923-3
246 +*0x0a: AS923-3
252 252  
253 -0x0b: CN470
248 +*0x0b: CN470
254 254  
255 -0x0c: EU433
250 +*0x0c: EU433
256 256  
257 -0x0d: KR920
252 +*0x0d: KR920
258 258  
259 -0x0e: MA869
254 +*0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -280,200 +280,186 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 284  
285 285  For example:
286 286  
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -2. All modes share the same Payload Explanation from HERE.
295 -
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 299  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 300  
301 -
302 302  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 303  
304 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 -|Value|Bat|(% style="width:191px" %)(((
307 -Temperature(DS18B20)(PC13)
308 -)))|(% style="width:78px" %)(((
309 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
310 310  )))|(% style="width:216px" %)(((
311 -Digital in(PB15)&Digital Interrupt(PA8)
312 -)))|(% style="width:308px" %)(((
313 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 -)))|(% style="width:154px" %)(((
315 -Humidity(SHT20 or SHT31)
316 -)))
305 +Digital in & Digital Interrupt
317 317  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
318 318  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319 319  
320 320  
321 321  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 322  
323 -
324 324  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 325  
326 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 -|Value|BAT|(% style="width:196px" %)(((
329 -Temperature(DS18B20)(PC13)
330 -)))|(% style="width:87px" %)(((
331 -ADC(PA4)
332 -)))|(% style="width:189px" %)(((
333 -Digital in(PB15) & Digital Interrupt(PA8)
334 -)))|(% style="width:208px" %)(((
335 -Distance measure by: 1) LIDAR-Lite V3HP
336 -Or 2) Ultrasonic Sensor
337 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
338 338  
339 339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340 340  
329 +**Connection of LIDAR-Lite V3HP:**
341 341  
342 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343 -
344 344  [[image:image-20230512173758-5.png||height="563" width="712"]]
345 345  
333 +**Connection to Ultrasonic Sensor:**
346 346  
347 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348 -
349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
350 -
351 351  [[image:image-20230512173903-6.png||height="596" width="715"]]
352 352  
353 -
354 354  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355 355  
356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 -|Value|BAT|(% style="width:183px" %)(((
359 -Temperature(DS18B20)(PC13)
360 -)))|(% style="width:173px" %)(((
361 -Digital in(PB15) & Digital Interrupt(PA8)
362 -)))|(% style="width:84px" %)(((
363 -ADC(PA4)
364 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
365 365  Distance measure by:1)TF-Mini plus LiDAR
366 -Or 2) TF-Luna LiDAR
367 -)))|(% style="width:188px" %)Distance signal  strength
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
368 368  
369 369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370 370  
371 -
372 372  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 373  
374 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
375 375  
376 376  [[image:image-20230512180609-7.png||height="555" width="802"]]
377 377  
378 -
379 379  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 380  
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
382 382  
383 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
384 384  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
385 385  
364 +
386 386  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387 387  
388 -
389 389  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390 390  
391 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 -|Value|(% style="width:68px" %)(((
396 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
397 397  )))|(% style="width:75px" %)(((
398 -ADC2(PA5)
399 -)))|(((
400 -ADC3(PA8)
401 -)))|(((
402 -Digital Interrupt(PB15)
403 -)))|(% style="width:304px" %)(((
404 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 -)))|(% style="width:163px" %)(((
406 -Humidity(SHT20 or SHT31)
407 -)))|(% style="width:53px" %)Bat
377 +ADC2
408 408  
409 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
410 410  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
411 411  
386 +
412 412  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413 413  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
414 414  
415 415  This mode has total 11 bytes. As shown below:
416 416  
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 -|Value|BAT|(% style="width:186px" %)(((
420 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
421 421  )))|(% style="width:82px" %)(((
422 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
423 423  )))|(% style="width:210px" %)(((
424 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
425 425  )))|(% style="width:191px" %)Temperature2(DS18B20)
426 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
427 427  
428 428  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429 429  
430 430  
431 -[[image:image-20230513134006-1.png||height="559" width="736"]]
432 -
433 -
434 434  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435 435  
436 -
437 437  [[image:image-20230512164658-2.png||height="532" width="729"]]
438 438  
439 439  Each HX711 need to be calibrated before used. User need to do below two steps:
440 440  
441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 443  1. (((
444 444  Weight has 4 bytes, the unit is g.
445 -
446 -
447 -
448 448  )))
449 449  
450 450  For example:
451 451  
452 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
453 453  
454 454  Response:  Weight is 401 g
455 455  
456 456  Check the response of this command and adjust the value to match the real value for thing.
457 457  
458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
460 460  **Size(bytes)**
461 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 -|Value|BAT|(% style="width:193px" %)(((
463 -Temperature(DS18B20)(PC13)
464 -)))|(% style="width:85px" %)(((
465 -ADC(PA4)
466 -)))|(% style="width:186px" %)(((
467 -Digital in(PB15) & Digital Interrupt(PA8)
468 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 469  
470 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
440 +(PC13)
471 471  
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
472 472  
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
473 473  
474 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
475 475  
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
476 476  
455 +
456 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
457 +
477 477  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478 478  
479 479  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -480,112 +480,86 @@
480 480  
481 481  [[image:image-20230512181814-9.png||height="543" width="697"]]
482 482  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
483 483  
484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
485 485  
486 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 -|Value|BAT|(% style="width:256px" %)(((
489 -Temperature(DS18B20)(PC13)
490 -)))|(% style="width:108px" %)(((
491 -ADC(PA4)
492 -)))|(% style="width:126px" %)(((
493 -Digital in(PB15)
494 -)))|(% style="width:145px" %)(((
495 -Count(PA8)
496 -)))
497 -
498 498  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499 499  
500 500  
501 501  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
502 502  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
503 503  
504 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
506 506  **Size(bytes)**
507 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 -|Value|BAT|(% style="width:188px" %)(((
509 -Temperature(DS18B20)
510 -(PC13)
511 -)))|(% style="width:83px" %)(((
512 -ADC(PA5)
513 -)))|(% style="width:184px" %)(((
514 -Digital Interrupt1(PA8)
515 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
516 516  
517 -[[image:image-20230513111203-7.png||height="324" width="975"]]
518 -
519 -
520 520  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
521 521  
522 -
523 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 -|Value|BAT|(% style="width:207px" %)(((
528 -Temperature(DS18B20)
529 -(PC13)
530 -)))|(% style="width:94px" %)(((
531 -ADC1(PA4)
532 -)))|(% style="width:198px" %)(((
533 -Digital Interrupt(PB15)
534 -)))|(% style="width:84px" %)(((
535 -ADC2(PA5)
536 -)))|(% style="width:82px" %)(((
537 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
538 538  )))
539 539  
540 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
541 541  
542 542  
543 543  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 544  
545 -
546 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
548 548  **Size(bytes)**
549 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 -|Value|BAT|(((
551 -Temperature
552 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
553 553  )))|(((
554 -Temperature2
555 -(DS18B20)(PB9)
512 +Temperature2(PA9)
556 556  )))|(((
557 -Digital Interrupt
558 -(PB15)
559 -)))|(% style="width:193px" %)(((
560 -Temperature3
561 -(DS18B20)(PB8)
562 -)))|(% style="width:78px" %)(((
563 -Count1(PA8)
564 -)))|(% style="width:78px" %)(((
565 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
566 566  )))
567 567  
568 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
569 569  
570 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
571 571  
572 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
577 577  
534 +**AT+SETCNT=aa,bb** 
578 578  
579 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
580 580  
581 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
582 582  
583 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
586 586  === 2.3.3  ​Decode payload ===
587 587  
588 -
589 589  While using TTN V3 network, you can add the payload format to decode the payload.
590 590  
591 591  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -592,14 +592,13 @@
592 592  
593 593  The payload decoder function for TTN V3 are here:
594 594  
595 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 596  
597 597  
598 598  ==== 2.3.3.1 Battery Info ====
599 599  
555 +Check the battery voltage for SN50v3.
600 600  
601 -Check the battery voltage for SN50v3-LB.
602 -
603 603  Ex1: 0x0B45 = 2885mV
604 604  
605 605  Ex2: 0x0B49 = 2889mV
... ... @@ -607,18 +607,16 @@
607 607  
608 608  ==== 2.3.3.2  Temperature (DS18B20) ====
609 609  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
610 610  
611 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
612 612  
613 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
614 614  
615 -(% style="color:blue" %)**Connection:**
616 -
617 617  [[image:image-20230512180718-8.png||height="538" width="647"]]
618 618  
572 +**Example**:
619 619  
620 -(% style="color:blue" %)**Example**:
621 -
622 622  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
623 623  
624 624  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -628,7 +628,6 @@
628 628  
629 629  ==== 2.3.3.3 Digital Input ====
630 630  
631 -
632 632  The digital input for pin PB15,
633 633  
634 634  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -636,65 +636,51 @@
636 636  
637 637  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
638 638  (((
639 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
640 -
641 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
642 -
643 -
590 +Note:The maximum voltage input supports 3.6V.
644 644  )))
645 645  
593 +(% class="wikigeneratedid" %)
646 646  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
647 647  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
648 648  
649 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
650 -
651 651  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
652 652  
653 653  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
654 654  
655 655  
656 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
657 -
658 -
659 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
660 -
661 -[[image:image-20230811113449-1.png||height="370" width="608"]]
662 -
663 663  ==== 2.3.3.5 Digital Interrupt ====
664 664  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
665 665  
666 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
667 667  
668 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
669 669  
670 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
671 671  
672 -
673 -(% style="color:blue" %)**Example to use with door sensor :**
674 -
675 675  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
676 676  
677 677  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
678 678  
679 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
680 680  
619 +**~ Below is the installation example:**
681 681  
682 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
683 683  
684 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685 -
686 686  * (((
687 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
688 688  )))
689 689  * (((
690 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
691 691  )))
692 692  
693 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
694 694  
695 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696 696  
697 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
698 698  
699 699  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
700 700  
... ... @@ -704,33 +704,29 @@
704 704  
705 705  The command is:
706 706  
707 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 708  
709 709  Below shows some screen captures in TTN V3:
710 710  
711 711  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
712 712  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
713 713  
714 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 -
716 716  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
717 717  
718 718  
719 719  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
720 720  
721 -
722 722  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
723 723  
724 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
725 725  
726 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
727 727  
728 -
729 729  Below is the connection to SHT20/ SHT31. The connection is as below:
730 730  
731 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
732 732  
733 -
734 734  The device will be able to get the I2C sensor data now and upload to IoT Server.
735 735  
736 736  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -748,26 +748,20 @@
748 748  
749 749  ==== 2.3.3.7  ​Distance Reading ====
750 750  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
751 751  
752 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
753 753  
754 -
755 755  ==== 2.3.3.8 Ultrasonic Sensor ====
756 756  
757 -
758 758  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759 759  
760 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 761  
762 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
763 -
764 764  The picture below shows the connection:
765 765  
766 -[[image:image-20230512173903-6.png||height="596" width="715"]]
767 767  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
768 768  
769 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770 -
771 771  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772 772  
773 773  **Example:**
... ... @@ -774,41 +774,50 @@
774 774  
775 775  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
776 776  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
777 777  
778 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
779 779  
708 +You can see the serial output in ULT mode as below:
780 780  
781 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
782 782  
712 +**In TTN V3 server:**
783 783  
784 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
785 785  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
786 786  
787 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
788 788  
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
721 +
722 +
723 +==== 2.3.3.10  +5V Output ====
724 +
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
726 +
789 789  The 5V output time can be controlled by AT Command.
790 790  
791 -(% style="color:blue" %)**AT+5VT=1000**
729 +**AT+5VT=1000**
792 792  
793 793  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
794 794  
795 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796 796  
797 797  
736 +
798 798  ==== 2.3.3.11  BH1750 Illumination Sensor ====
799 799  
800 -
801 801  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
802 802  
803 -[[image:image-20230512172447-4.png||height="416" width="712"]]
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
804 804  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
805 805  
806 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
807 807  
808 -
809 809  ==== 2.3.3.12  Working MOD ====
810 810  
811 -
812 812  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813 813  
814 814  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -821,11 +821,7 @@
821 821  * 3: MOD4
822 822  * 4: MOD5
823 823  * 5: MOD6
824 -* 6: MOD7
825 -* 7: MOD8
826 -* 8: MOD9
827 827  
828 -
829 829  == 2.4 Payload Decoder file ==
830 830  
831 831  
... ... @@ -833,9 +833,10 @@
833 833  
834 834  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
835 835  
836 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
837 837  
838 838  
771 +
839 839  == 2.5 Frequency Plans ==
840 840  
841 841  
... ... @@ -855,7 +855,6 @@
855 855  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
856 856  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857 857  
858 -
859 859  == 3.2 General Commands ==
860 860  
861 861  
... ... @@ -872,7 +872,7 @@
872 872  == 3.3 Commands special design for SN50v3-LB ==
873 873  
874 874  
875 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
876 876  
877 877  
878 878  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -883,7 +883,7 @@
883 883  (% style="color:blue" %)**AT Command: AT+TDC**
884 884  
885 885  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
886 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
887 887  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
888 888  30000
889 889  OK
... ... @@ -903,32 +903,30 @@
903 903  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
904 904  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
905 905  
906 -
907 907  === 3.3.2 Get Device Status ===
908 908  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
909 909  
910 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
911 911  
912 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
913 913  
914 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
915 915  
847 +=== 3.3.7 Set Interrupt Mode ===
916 916  
917 -=== 3.3.3 Set Interrupt Mode ===
918 918  
919 -
920 920  Feature, Set Interrupt mode for GPIO_EXIT.
921 921  
922 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
923 923  
924 924  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
925 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
926 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
927 927  0
928 928  OK
929 929  the mode is 0 =Disable Interrupt
930 930  )))
931 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
932 932  Set Transmit Interval
933 933  0. (Disable Interrupt),
934 934  ~1. (Trigger by rising and falling edge)
... ... @@ -935,11 +935,6 @@
935 935  2. (Trigger by falling edge)
936 936  3. (Trigger by rising edge)
937 937  )))|(% style="width:157px" %)OK
938 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
939 -Set Transmit Interval
940 -trigger by rising edge.
941 -)))|(% style="width:157px" %)OK
942 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
943 943  
944 944  (% style="color:blue" %)**Downlink Command: 0x06**
945 945  
... ... @@ -947,120 +947,9 @@
947 947  
948 948  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
949 949  
950 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
951 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
952 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
953 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
954 954  
955 -
956 -=== 3.3.4 Set Power Output Duration ===
957 -
958 -
959 -Control the output duration 5V . Before each sampling, device will
960 -
961 -~1. first enable the power output to external sensor,
962 -
963 -2. keep it on as per duration, read sensor value and construct uplink payload
964 -
965 -3. final, close the power output.
966 -
967 -(% style="color:blue" %)**AT Command: AT+5VT**
968 -
969 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
970 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
971 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
972 -500(default)
973 -OK
974 -)))
975 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
976 -Close after a delay of 1000 milliseconds.
977 -)))|(% style="width:157px" %)OK
978 -
979 -(% style="color:blue" %)**Downlink Command: 0x07**
980 -
981 -Format: Command Code (0x07) followed by 2 bytes.
982 -
983 -The first and second bytes are the time to turn on.
984 -
985 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
986 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
987 -
988 -
989 -=== 3.3.5 Set Weighing parameters ===
990 -
991 -
992 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
993 -
994 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
995 -
996 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
998 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
999 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1000 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1001 -
1002 -(% style="color:blue" %)**Downlink Command: 0x08**
1003 -
1004 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1005 -
1006 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1007 -
1008 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1009 -
1010 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1011 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1012 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1013 -
1014 -
1015 -=== 3.3.6 Set Digital pulse count value ===
1016 -
1017 -
1018 -Feature: Set the pulse count value.
1019 -
1020 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1021 -
1022 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1023 -
1024 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1025 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1026 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1027 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1028 -
1029 -(% style="color:blue" %)**Downlink Command: 0x09**
1030 -
1031 -Format: Command Code (0x09) followed by 5 bytes.
1032 -
1033 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1034 -
1035 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1036 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1037 -
1038 -
1039 -=== 3.3.7 Set Workmode ===
1040 -
1041 -
1042 -Feature: Switch working mode.
1043 -
1044 -(% style="color:blue" %)**AT Command: AT+MOD**
1045 -
1046 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1048 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1049 -OK
1050 -)))
1051 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1052 -OK
1053 -Attention:Take effect after ATZ
1054 -)))
1055 -
1056 -(% style="color:blue" %)**Downlink Command: 0x0A**
1057 -
1058 -Format: Command Code (0x0A) followed by 1 bytes.
1059 -
1060 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1061 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1062 -
1063 -
1064 1064  = 4. Battery & Power Consumption =
1065 1065  
1066 1066  
... ... @@ -1073,45 +1073,28 @@
1073 1073  
1074 1074  
1075 1075  (% class="wikigeneratedid" %)
1076 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1077 1077  
1078 1078  * Change Frequency band/ region.
1079 1079  * Update with new features.
1080 1080  * Fix bugs.
1081 1081  
1082 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1083 1083  
1084 -**Methods to Update Firmware:**
1085 1085  
1086 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1087 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
899 +Methods to Update Firmware:
1088 1088  
901 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1089 1089  
1090 1090  = 6. FAQ =
1091 1091  
1092 1092  == 6.1 Where can i find source code of SN50v3-LB? ==
1093 1093  
1094 -
1095 1095  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1096 1096  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1097 1097  
1098 1098  
1099 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1100 -
1101 -
1102 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1103 -
1104 -
1105 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1106 -
1107 -
1108 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1109 -
1110 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1111 -
1112 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1113 -
1114 -
1115 1115  = 7. Order Info =
1116 1116  
1117 1117  
... ... @@ -1135,10 +1135,8 @@
1135 1135  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1136 1136  * (% style="color:red" %)**NH**(%%): No Hole
1137 1137  
1138 -
1139 1139  = 8. ​Packing Info =
1140 1140  
1141 -
1142 1142  (% style="color:#037691" %)**Package Includes**:
1143 1143  
1144 1144  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1154,5 +1154,4 @@
1154 1154  
1155 1155  
1156 1156  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1157 -
1158 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0