Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 9 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.ting - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -41,8 +41,6 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 48 ... ... @@ -80,8 +80,6 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 87 ... ... @@ -109,8 +109,6 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 ... ... @@ -473,7 +473,6 @@ 473 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 474 474 475 475 476 - 477 477 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 478 478 479 479 ... ... @@ -586,6 +586,86 @@ 586 586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 587 587 588 588 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 + 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 + 604 +&Digital Interrupt(PA8) 605 +)))|(% style="width:70px" %)((( 606 +Pulse period 607 +)))|(% style="width:89px" %)((( 608 +Duration of high level 609 +))) 610 + 611 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 + 613 + 614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 + 616 +**Frequency:** 617 + 618 +(% class="MsoNormal" %) 619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 + 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 + 624 + 625 +(% class="MsoNormal" %) 626 +**Duty cycle:** 627 + 628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 + 630 +[[image:image-20230818092200-1.png||height="344" width="627"]] 631 + 632 +===== 2.3.2.10.b Uplink, PWM input capture ===== 633 + 634 + 635 + 636 + 637 + 638 + 639 + 640 +===== 2.3.2.10.c Downlink, PWM output ===== 641 + 642 + 643 +[[image:image-20230817173800-3.png||height="412" width="685"]] 644 + 645 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 646 + 647 + xx xx xx is the output frequency, the unit is HZ. 648 + 649 + yy is the duty cycle of the output, the unit is %. 650 + 651 + zz zz is the time delay of the output, the unit is ms. 652 + 653 + 654 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 655 + 656 +The oscilloscope displays as follows: 657 + 658 +[[image:image-20230817173858-5.png||height="694" width="921"]] 659 + 660 + 589 589 === 2.3.3 Decode payload === 590 590 591 591 ... ... @@ -659,6 +659,10 @@ 659 659 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 660 660 661 661 734 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 735 + 736 +[[image:image-20230811113449-1.png||height="370" width="608"]] 737 + 662 662 ==== 2.3.3.5 Digital Interrupt ==== 663 663 664 664 ... ... @@ -805,9 +805,40 @@ 805 805 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 806 806 807 807 808 -==== 2.3.3.12 W orkingMOD ====884 +==== 2.3.3.12 PWM MOD ==== 809 809 810 810 887 +* ((( 888 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 889 +))) 890 +* ((( 891 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 892 +))) 893 + 894 + [[image:image-20230817183249-3.png||height="320" width="417"]] 895 + 896 +* ((( 897 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 898 +))) 899 +* ((( 900 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 +))) 902 +* ((( 903 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 904 + 905 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 + 907 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 908 + 909 +b) If the output duration is more than 30 seconds, better to use external power source. 910 + 911 + 912 + 913 +))) 914 + 915 +==== 2.3.3.13 Working MOD ==== 916 + 917 + 811 811 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 812 812 813 813 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -823,9 +823,8 @@ 823 823 * 6: MOD7 824 824 * 7: MOD8 825 825 * 8: MOD9 933 +* 9: MOD10 826 826 827 - 828 - 829 829 == 2.4 Payload Decoder file == 830 830 831 831 ... ... @@ -855,8 +855,6 @@ 855 855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 - 859 - 860 860 == 3.2 General Commands == 861 861 862 862 ... ... @@ -904,8 +904,6 @@ 904 904 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 905 905 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 906 906 907 - 908 - 909 909 === 3.3.2 Get Device Status === 910 910 911 911 ... ... @@ -954,8 +954,6 @@ 954 954 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 955 955 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 956 956 957 - 958 - 959 959 === 3.3.4 Set Power Output Duration === 960 960 961 961 ... ... @@ -988,8 +988,6 @@ 988 988 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 989 989 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 990 990 991 - 992 - 993 993 === 3.3.5 Set Weighing parameters === 994 994 995 995 ... ... @@ -1015,8 +1015,6 @@ 1015 1015 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1016 1016 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1017 1017 1018 - 1019 - 1020 1020 === 3.3.6 Set Digital pulse count value === 1021 1021 1022 1022 ... ... @@ -1040,8 +1040,6 @@ 1040 1040 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1041 1041 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1042 1042 1043 - 1044 - 1045 1045 === 3.3.7 Set Workmode === 1046 1046 1047 1047 ... ... @@ -1066,8 +1066,70 @@ 1066 1066 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1067 1067 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1068 1068 1163 +=== 3.3.8 PWM setting === 1069 1069 1070 1070 1166 +* Feature: Set the time acquisition unit for PWM input capture. 1167 + 1168 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1169 + 1170 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1173 +0(default) 1174 + 1175 +OK 1176 +))) 1177 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1178 +OK 1179 + 1180 +))) 1181 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1182 + 1183 +(% style="color:blue" %)**Downlink Command: 0x0C** 1184 + 1185 +Format: Command Code (0x0C) followed by 1 bytes. 1186 + 1187 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 + 1190 +* Feature: Set the time acquisition unit for PWM input capture. 1191 + 1192 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 + 1194 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %) 1195 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1196 +|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1197 +0,0,0(default) 1198 + 1199 +OK 1200 +))) 1201 +|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)((( 1202 +OK 1203 + 1204 +))) 1205 +|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)((( 1206 +PWM output. 1207 + 1208 +a: Output time (unit: seconds) 1209 + 1210 +b: Output frequency (unit: HZ) 1211 + 1212 +c: Output duty cycle (unit: %) 1213 +)))|(% style="width:157px" %)((( 1214 +OK 1215 +))) 1216 + 1217 + 1218 +(% style="color:blue" %)**Downlink Command: 0x0C** 1219 + 1220 + 1221 +Format: Command Code (0x0C) followed by 1 bytes. 1222 + 1223 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1225 + 1226 + 1071 1071 = 4. Battery & Power Consumption = 1072 1072 1073 1073 ... ... @@ -1093,8 +1093,6 @@ 1093 1093 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1094 1094 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1095 1095 1096 - 1097 - 1098 1098 = 6. FAQ = 1099 1099 1100 1100 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1103,8 +1103,6 @@ 1103 1103 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1104 1104 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1105 1105 1106 - 1107 - 1108 1108 == 6.2 How to generate PWM Output in SN50v3-LB? == 1109 1109 1110 1110 ... ... @@ -1144,8 +1144,6 @@ 1144 1144 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1145 1145 * (% style="color:red" %)**NH**(%%): No Hole 1146 1146 1147 - 1148 - 1149 1149 = 8. Packing Info = 1150 1150 1151 1151
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content