Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,16 +39,15 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 48 49 49 (% style="color:#037691" %)**Common DC Characteristics:** 50 50 51 -* Supply Voltage: built in8500mAh Li-SOCI2battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v 52 52 * Operating Temperature: -40 ~~ 85°C 53 53 54 54 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -80,8 +80,6 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 87 ... ... @@ -93,7 +93,7 @@ 93 93 == 1.5 Button & LEDs == 94 94 95 95 96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 97 97 98 98 99 99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -109,12 +109,10 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 117 -SN50v3-LB supports BLE remote configure. 116 +SN50v3-LB/LS supports BLE remote configure. 118 118 119 119 120 120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -134,18 +134,23 @@ 134 134 135 135 == 1.8 Mechanical == 136 136 136 +=== 1.8.1 for LB version === 137 137 138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 139 139 140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 141 141 141 + 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 +=== 1.8.2 for LS version === 144 144 146 +[[image:image-20231231203439-3.png||height="385" width="886"]] 147 + 148 + 145 145 == 1.9 Hole Option == 146 146 147 147 148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 149 149 150 150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 151 151 ... ... @@ -152,12 +152,12 @@ 152 152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 153 153 154 154 155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 156 156 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -168,9 +168,9 @@ 168 168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 172 172 173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 174 174 175 175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 176 176 ... ... @@ -199,10 +199,10 @@ 199 199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 200 200 201 201 202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 203 203 204 204 205 -Press the button for 5 seconds to activate the SN50v3-LB. 209 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 206 206 207 207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 208 208 ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -227,7 +227,7 @@ 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 ... ... @@ -283,7 +283,7 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 287 287 288 288 For example: 289 289 ... ... @@ -292,7 +292,7 @@ 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 296 296 297 297 2. All modes share the same Payload Explanation from HERE. 298 298 ... ... @@ -473,7 +473,6 @@ 473 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 474 474 475 475 476 - 477 477 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 478 478 479 479 ... ... @@ -586,6 +586,108 @@ 586 586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 587 587 588 588 592 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 593 + 594 + 595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 596 + 597 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 598 + 599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 600 + 601 + 602 +===== 2.3.2.10.a Uplink, PWM input capture ===== 603 + 604 + 605 +[[image:image-20230817172209-2.png||height="439" width="683"]] 606 + 607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 608 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 609 +|Value|Bat|(% style="width:191px" %)((( 610 +Temperature(DS18B20)(PC13) 611 +)))|(% style="width:78px" %)((( 612 +ADC(PA4) 613 +)))|(% style="width:135px" %)((( 614 +PWM_Setting 615 +&Digital Interrupt(PA8) 616 +)))|(% style="width:70px" %)((( 617 +Pulse period 618 +)))|(% style="width:89px" %)((( 619 +Duration of high level 620 +))) 621 + 622 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 623 + 624 + 625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 626 + 627 +**Frequency:** 628 + 629 +(% class="MsoNormal" %) 630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 631 + 632 +(% class="MsoNormal" %) 633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 634 + 635 + 636 +(% class="MsoNormal" %) 637 +**Duty cycle:** 638 + 639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 640 + 641 +[[image:image-20230818092200-1.png||height="344" width="627"]] 642 + 643 + 644 +===== 2.3.2.10.b Uplink, PWM output ===== 645 + 646 + 647 +[[image:image-20230817172209-2.png||height="439" width="683"]] 648 + 649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 650 + 651 +a is the time delay of the output, the unit is ms. 652 + 653 +b is the output frequency, the unit is HZ. 654 + 655 +c is the duty cycle of the output, the unit is %. 656 + 657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 658 + 659 +aa is the time delay of the output, the unit is ms. 660 + 661 +bb is the output frequency, the unit is HZ. 662 + 663 +cc is the duty cycle of the output, the unit is %. 664 + 665 + 666 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 667 + 668 +The oscilloscope displays as follows: 669 + 670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 671 + 672 + 673 +===== 2.3.2.10.c Downlink, PWM output ===== 674 + 675 + 676 +[[image:image-20230817173800-3.png||height="412" width="685"]] 677 + 678 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 679 + 680 + xx xx xx is the output frequency, the unit is HZ. 681 + 682 + yy is the duty cycle of the output, the unit is %. 683 + 684 + zz zz is the time delay of the output, the unit is ms. 685 + 686 + 687 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 688 + 689 +The oscilloscope displays as follows: 690 + 691 +[[image:image-20230817173858-5.png||height="634" width="843"]] 692 + 693 + 589 589 === 2.3.3 Decode payload === 590 590 591 591 ... ... @@ -595,13 +595,13 @@ 595 595 596 596 The payload decoder function for TTN V3 are here: 597 597 598 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 703 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 599 599 600 600 601 601 ==== 2.3.3.1 Battery Info ==== 602 602 603 603 604 -Check the battery voltage for SN50v3-LB. 709 +Check the battery voltage for SN50v3-LB/LS. 605 605 606 606 Ex1: 0x0B45 = 2885mV 607 607 ... ... @@ -659,10 +659,16 @@ 659 659 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 660 660 661 661 767 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 768 + 769 +[[image:image-20230811113449-1.png||height="370" width="608"]] 770 + 771 + 772 + 662 662 ==== 2.3.3.5 Digital Interrupt ==== 663 663 664 664 665 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 666 666 667 667 (% style="color:blue" %)** Interrupt connection method:** 668 668 ... ... @@ -675,18 +675,18 @@ 675 675 676 676 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 677 677 678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 679 679 680 680 681 681 (% style="color:blue" %)**Below is the installation example:** 682 682 683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 684 684 685 685 * ((( 686 -One pin to SN50v3-LB's PA8 pin 797 +One pin to SN50v3-LB/LS's PA8 pin 687 687 ))) 688 688 * ((( 689 -The other pin to SN50v3-LB's VDD pin 800 +The other pin to SN50v3-LB/LS's VDD pin 690 690 ))) 691 691 692 692 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -722,7 +722,7 @@ 722 722 723 723 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 724 724 725 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 726 726 727 727 728 728 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -756,7 +756,7 @@ 756 756 757 757 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 758 758 759 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 760 760 761 761 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 762 762 ... ... @@ -765,7 +765,7 @@ 765 765 [[image:image-20230512173903-6.png||height="596" width="715"]] 766 766 767 767 768 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 769 769 770 770 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 771 771 ... ... @@ -777,13 +777,13 @@ 777 777 ==== 2.3.3.9 Battery Output - BAT pin ==== 778 778 779 779 780 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 781 781 782 782 783 783 ==== 2.3.3.10 +5V Output ==== 784 784 785 785 786 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 787 787 788 788 The 5V output time can be controlled by AT Command. 789 789 ... ... @@ -805,9 +805,38 @@ 805 805 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 806 806 807 807 808 -==== 2.3.3.12 W orkingMOD ====919 +==== 2.3.3.12 PWM MOD ==== 809 809 810 810 922 +* ((( 923 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 924 +))) 925 +* ((( 926 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 927 +))) 928 + 929 + [[image:image-20230817183249-3.png||height="320" width="417"]] 930 + 931 +* ((( 932 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 933 +))) 934 +* ((( 935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 936 +))) 937 +* ((( 938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 939 + 940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 941 + 942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 943 + 944 +b) If the output duration is more than 30 seconds, better to use external power source. 945 +))) 946 + 947 + 948 +==== 2.3.3.13 Working MOD ==== 949 + 950 + 811 811 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 812 812 813 813 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -823,9 +823,8 @@ 823 823 * 6: MOD7 824 824 * 7: MOD8 825 825 * 8: MOD9 966 +* 9: MOD10 826 826 827 - 828 - 829 829 == 2.4 Payload Decoder file == 830 830 831 831 ... ... @@ -839,24 +839,22 @@ 839 839 == 2.5 Frequency Plans == 840 840 841 841 842 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 843 843 844 844 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 845 845 846 846 847 -= 3. Configure SN50v3-LB = 986 += 3. Configure SN50v3-LB/LS = 848 848 849 849 == 3.1 Configure Methods == 850 850 851 851 852 -SN50v3-LB supports below configure method: 991 +SN50v3-LB/LS supports below configure method: 853 853 854 854 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 855 855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 - 859 - 860 860 == 3.2 General Commands == 861 861 862 862 ... ... @@ -870,10 +870,10 @@ 870 870 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 871 871 872 872 873 -== 3.3 Commands special design for SN50v3-LB == 1010 +== 3.3 Commands special design for SN50v3-LB/LS == 874 874 875 875 876 -These commands only valid for SN50v3-LB, as below: 1013 +These commands only valid for SN50v3-LB/LS, as below: 877 877 878 878 879 879 === 3.3.1 Set Transmit Interval Time === ... ... @@ -904,8 +904,6 @@ 904 904 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 905 905 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 906 906 907 - 908 - 909 909 === 3.3.2 Get Device Status === 910 910 911 911 ... ... @@ -954,8 +954,6 @@ 954 954 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 955 955 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 956 956 957 - 958 - 959 959 === 3.3.4 Set Power Output Duration === 960 960 961 961 ... ... @@ -988,8 +988,6 @@ 988 988 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 989 989 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 990 990 991 - 992 - 993 993 === 3.3.5 Set Weighing parameters === 994 994 995 995 ... ... @@ -1015,8 +1015,6 @@ 1015 1015 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1016 1016 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1017 1017 1018 - 1019 - 1020 1020 === 3.3.6 Set Digital pulse count value === 1021 1021 1022 1022 ... ... @@ -1040,8 +1040,6 @@ 1040 1040 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1041 1041 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1042 1042 1043 - 1044 - 1045 1045 === 3.3.7 Set Workmode === 1046 1046 1047 1047 ... ... @@ -1066,13 +1066,103 @@ 1066 1066 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1067 1067 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1068 1068 1196 +(% id="H3.3.8PWMsetting" %) 1197 +=== 3.3.8 PWM setting === 1069 1069 1070 1070 1071 -= 4. Battery&PowerConsumption=1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1072 1072 1202 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1073 1073 1074 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1204 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1205 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1207 +0(default) 1075 1075 1209 +OK 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1212 +OK 1213 + 1214 +))) 1215 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1216 + 1217 +(% style="color:blue" %)**Downlink Command: 0x0C** 1218 + 1219 +Format: Command Code (0x0C) followed by 1 bytes. 1220 + 1221 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1222 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1223 + 1224 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1225 + 1226 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1227 + 1228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1229 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1230 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1231 +0,0,0(default) 1232 + 1233 +OK 1234 +))) 1235 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1236 +OK 1237 + 1238 +))) 1239 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1240 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1241 + 1242 + 1243 +)))|(% style="width:137px" %)((( 1244 +OK 1245 +))) 1246 + 1247 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1248 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1249 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1250 +AT+PWMOUT=a,b,c 1251 + 1252 + 1253 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1254 +Set PWM output time, output frequency and output duty cycle. 1255 + 1256 +((( 1257 + 1258 +))) 1259 + 1260 +((( 1261 + 1262 +))) 1263 +)))|(% style="width:242px" %)((( 1264 +a: Output time (unit: seconds) 1265 + 1266 +The value ranges from 0 to 65535. 1267 + 1268 +When a=65535, PWM will always output. 1269 +))) 1270 +|(% style="width:242px" %)((( 1271 +b: Output frequency (unit: HZ) 1272 +))) 1273 +|(% style="width:242px" %)((( 1274 +c: Output duty cycle (unit: %) 1275 + 1276 +The value ranges from 0 to 100. 1277 +))) 1278 + 1279 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1280 + 1281 +Format: Command Code (0x0B01) followed by 6 bytes. 1282 + 1283 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1284 + 1285 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1286 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1287 + 1288 += 4. Battery & Power Cons = 1289 + 1290 + 1291 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1292 + 1076 1076 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1077 1077 1078 1078 ... ... @@ -1080,7 +1080,7 @@ 1080 1080 1081 1081 1082 1082 (% class="wikigeneratedid" %) 1083 -**User can change firmware SN50v3-LB to:** 1300 +**User can change firmware SN50v3-LB/LS to:** 1084 1084 1085 1085 * Change Frequency band/ region. 1086 1086 * Update with new features. ... ... @@ -1093,28 +1093,24 @@ 1093 1093 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1094 1094 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1095 1095 1096 - 1097 - 1098 1098 = 6. FAQ = 1099 1099 1100 -== 6.1 Where can i find source code of SN50v3-LB? == 1315 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1101 1101 1102 1102 1103 1103 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1104 1104 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1105 1105 1321 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1106 1106 1107 1107 1108 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1109 - 1110 - 1111 1111 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1112 1112 1113 1113 1114 -== 6.3 How to put several sensors to a SN50v3-LB? == 1327 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1115 1115 1116 1116 1117 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1330 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1118 1118 1119 1119 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1120 1120 ... ... @@ -1124,7 +1124,7 @@ 1124 1124 = 7. Order Info = 1125 1125 1126 1126 1127 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1340 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1128 1128 1129 1129 (% style="color:red" %)**XX**(%%): The default frequency band 1130 1130 ... ... @@ -1144,14 +1144,12 @@ 1144 1144 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1145 1145 * (% style="color:red" %)**NH**(%%): No Hole 1146 1146 1147 - 1148 - 1149 1149 = 8. Packing Info = 1150 1150 1151 1151 1152 1152 (% style="color:#037691" %)**Package Includes**: 1153 1153 1154 -* SN50v3-LB LoRaWAN Generic Node 1365 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1155 1155 1156 1156 (% style="color:#037691" %)**Dimension and weight**: 1157 1157
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content