Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,15 +39,15 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 47 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 -* Supply Voltage: built in8500mAh Li-SOCI2battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v 51 51 * Operating Temperature: -40 ~~ 85°C 52 52 53 53 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -79,7 +79,6 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -91,7 +91,7 @@ 91 91 == 1.5 Button & LEDs == 92 92 93 93 94 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 95 95 96 96 97 97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -107,11 +107,10 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 114 -SN50v3-LB supports BLE remote configure. 116 +SN50v3-LB/LS supports BLE remote configure. 115 115 116 116 117 117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -131,18 +131,23 @@ 131 131 132 132 == 1.8 Mechanical == 133 133 136 +=== 1.8.1 for LB version === 134 134 135 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 136 136 137 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 138 141 + 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 144 +=== 1.8.2 for LS version === 141 141 146 +[[image:image-20231231203439-3.png||height="385" width="886"]] 147 + 148 + 142 142 == 1.9 Hole Option == 143 143 144 144 145 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 146 146 147 147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 148 148 ... ... @@ -149,12 +149,12 @@ 149 149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 150 150 151 151 152 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 153 153 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,9 +165,9 @@ 165 165 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 169 169 170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 171 171 172 172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 173 173 ... ... @@ -196,10 +196,10 @@ 196 196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 197 197 198 198 199 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 200 200 201 201 202 -Press the button for 5 seconds to activate the SN50v3-LB. 209 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 203 203 204 204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 205 205 ... ... @@ -211,7 +211,7 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 ... ... @@ -224,7 +224,7 @@ 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 ... ... @@ -280,7 +280,7 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 284 284 285 285 For example: 286 286 ... ... @@ -289,7 +289,7 @@ 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 293 293 294 294 2. All modes share the same Payload Explanation from HERE. 295 295 ... ... @@ -470,7 +470,6 @@ 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -583,6 +583,105 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 592 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 593 + 594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 595 + 596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 597 + 598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 599 + 600 + 601 +===== 2.3.2.10.a Uplink, PWM input capture ===== 602 + 603 + 604 +[[image:image-20230817172209-2.png||height="439" width="683"]] 605 + 606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 607 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 608 +|Value|Bat|(% style="width:191px" %)((( 609 +Temperature(DS18B20)(PC13) 610 +)))|(% style="width:78px" %)((( 611 +ADC(PA4) 612 +)))|(% style="width:135px" %)((( 613 +PWM_Setting 614 +&Digital Interrupt(PA8) 615 +)))|(% style="width:70px" %)((( 616 +Pulse period 617 +)))|(% style="width:89px" %)((( 618 +Duration of high level 619 +))) 620 + 621 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 622 + 623 + 624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 625 + 626 +**Frequency:** 627 + 628 +(% class="MsoNormal" %) 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 630 + 631 +(% class="MsoNormal" %) 632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 633 + 634 + 635 +(% class="MsoNormal" %) 636 +**Duty cycle:** 637 + 638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 639 + 640 +[[image:image-20230818092200-1.png||height="344" width="627"]] 641 + 642 +===== 2.3.2.10.b Uplink, PWM output ===== 643 + 644 +[[image:image-20230817172209-2.png||height="439" width="683"]] 645 + 646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 647 + 648 +a is the time delay of the output, the unit is ms. 649 + 650 +b is the output frequency, the unit is HZ. 651 + 652 +c is the duty cycle of the output, the unit is %. 653 + 654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 655 + 656 +aa is the time delay of the output, the unit is ms. 657 + 658 +bb is the output frequency, the unit is HZ. 659 + 660 +cc is the duty cycle of the output, the unit is %. 661 + 662 + 663 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 664 + 665 +The oscilloscope displays as follows: 666 + 667 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 668 + 669 + 670 +===== 2.3.2.10.c Downlink, PWM output ===== 671 + 672 + 673 +[[image:image-20230817173800-3.png||height="412" width="685"]] 674 + 675 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 676 + 677 + xx xx xx is the output frequency, the unit is HZ. 678 + 679 + yy is the duty cycle of the output, the unit is %. 680 + 681 + zz zz is the time delay of the output, the unit is ms. 682 + 683 + 684 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 685 + 686 +The oscilloscope displays as follows: 687 + 688 +[[image:image-20230817173858-5.png||height="694" width="921"]] 689 + 690 + 586 586 === 2.3.3 Decode payload === 587 587 588 588 ... ... @@ -592,13 +592,13 @@ 592 592 593 593 The payload decoder function for TTN V3 are here: 594 594 595 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 700 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 596 597 597 598 598 ==== 2.3.3.1 Battery Info ==== 599 599 600 600 601 -Check the battery voltage for SN50v3-LB. 706 +Check the battery voltage for SN50v3-LB/LS. 602 602 603 603 Ex1: 0x0B45 = 2885mV 604 604 ... ... @@ -656,10 +656,14 @@ 656 656 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 657 657 658 658 764 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 765 + 766 +[[image:image-20230811113449-1.png||height="370" width="608"]] 767 + 659 659 ==== 2.3.3.5 Digital Interrupt ==== 660 660 661 661 662 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 771 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 663 663 664 664 (% style="color:blue" %)** Interrupt connection method:** 665 665 ... ... @@ -672,18 +672,18 @@ 672 672 673 673 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 674 674 675 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 784 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 676 676 677 677 678 678 (% style="color:blue" %)**Below is the installation example:** 679 679 680 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 789 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 681 681 682 682 * ((( 683 -One pin to SN50v3-LB's PA8 pin 792 +One pin to SN50v3-LB/LS's PA8 pin 684 684 ))) 685 685 * ((( 686 -The other pin to SN50v3-LB's VDD pin 795 +The other pin to SN50v3-LB/LS's VDD pin 687 687 ))) 688 688 689 689 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -719,7 +719,7 @@ 719 719 720 720 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 721 721 722 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 831 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 723 723 724 724 725 725 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -753,7 +753,7 @@ 753 753 754 754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 755 755 756 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 865 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 757 757 758 758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 759 759 ... ... @@ -762,7 +762,7 @@ 762 762 [[image:image-20230512173903-6.png||height="596" width="715"]] 763 763 764 764 765 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 874 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 766 767 767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 768 768 ... ... @@ -774,13 +774,13 @@ 774 774 ==== 2.3.3.9 Battery Output - BAT pin ==== 775 775 776 776 777 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 886 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 778 778 779 779 780 780 ==== 2.3.3.10 +5V Output ==== 781 781 782 782 783 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 892 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 784 784 785 785 The 5V output time can be controlled by AT Command. 786 786 ... ... @@ -802,9 +802,39 @@ 802 802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 803 803 804 804 805 -==== 2.3.3.12 W orkingMOD ====914 +==== 2.3.3.12 PWM MOD ==== 806 806 807 807 917 +* ((( 918 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 919 +))) 920 +* ((( 921 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 922 +))) 923 + 924 + [[image:image-20230817183249-3.png||height="320" width="417"]] 925 + 926 +* ((( 927 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 928 +))) 929 +* ((( 930 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 931 +))) 932 +* ((( 933 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 934 + 935 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 936 + 937 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 938 + 939 +b) If the output duration is more than 30 seconds, better to use external power source. 940 +))) 941 + 942 + 943 + 944 +==== 2.3.3.13 Working MOD ==== 945 + 946 + 808 808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 809 809 810 810 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -820,8 +820,8 @@ 820 820 * 6: MOD7 821 821 * 7: MOD8 822 822 * 8: MOD9 962 +* 9: MOD10 823 823 824 - 825 825 == 2.4 Payload Decoder file == 826 826 827 827 ... ... @@ -835,23 +835,22 @@ 835 835 == 2.5 Frequency Plans == 836 836 837 837 838 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 977 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 839 839 840 840 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 841 841 842 842 843 -= 3. Configure SN50v3-LB = 982 += 3. Configure SN50v3-LB/LS = 844 844 845 845 == 3.1 Configure Methods == 846 846 847 847 848 -SN50v3-LB supports below configure method: 987 +SN50v3-LB/LS supports below configure method: 849 849 850 850 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 851 851 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 852 852 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 853 853 854 - 855 855 == 3.2 General Commands == 856 856 857 857 ... ... @@ -865,10 +865,10 @@ 865 865 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 866 866 867 867 868 -== 3.3 Commands special design for SN50v3-LB == 1006 +== 3.3 Commands special design for SN50v3-LB/LS == 869 869 870 870 871 -These commands only valid for SN50v3-LB, as below: 1009 +These commands only valid for SN50v3-LB/LS, as below: 872 872 873 873 874 874 === 3.3.1 Set Transmit Interval Time === ... ... @@ -899,7 +899,6 @@ 899 899 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 900 900 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 901 901 902 - 903 903 === 3.3.2 Get Device Status === 904 904 905 905 ... ... @@ -948,7 +948,6 @@ 948 948 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 949 949 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 950 950 951 - 952 952 === 3.3.4 Set Power Output Duration === 953 953 954 954 ... ... @@ -981,7 +981,6 @@ 981 981 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 982 982 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 983 983 984 - 985 985 === 3.3.5 Set Weighing parameters === 986 986 987 987 ... ... @@ -1007,7 +1007,6 @@ 1007 1007 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1008 1008 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1009 1009 1010 - 1011 1011 === 3.3.6 Set Digital pulse count value === 1012 1012 1013 1013 ... ... @@ -1031,7 +1031,6 @@ 1031 1031 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1032 1032 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1033 1033 1034 - 1035 1035 === 3.3.7 Set Workmode === 1036 1036 1037 1037 ... ... @@ -1056,12 +1056,103 @@ 1056 1056 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1057 1057 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1058 1058 1192 +(% id="H3.3.8PWMsetting" %) 1193 +=== 3.3.8 PWM setting === 1059 1059 1060 -= 4. Battery & Power Consumption = 1061 1061 1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1062 1062 1063 - SN50v3-LBuse ER26500 + SPC1520 batterypack. See belowlink fordetail information about thebatteryinfohow to replace.1198 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1064 1064 1200 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1203 +0(default) 1204 + 1205 +OK 1206 +))) 1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 +OK 1209 + 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 + 1213 +(% style="color:blue" %)**Downlink Command: 0x0C** 1214 + 1215 +Format: Command Code (0x0C) followed by 1 bytes. 1216 + 1217 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 + 1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1221 + 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 + 1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1228 + 1229 +OK 1230 +))) 1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1232 +OK 1233 + 1234 +))) 1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1237 + 1238 + 1239 +)))|(% style="width:137px" %)((( 1240 +OK 1241 +))) 1242 + 1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1245 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1246 +AT+PWMOUT=a,b,c 1247 + 1248 + 1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1250 +Set PWM output time, output frequency and output duty cycle. 1251 + 1252 +((( 1253 + 1254 +))) 1255 + 1256 +((( 1257 + 1258 +))) 1259 +)))|(% style="width:242px" %)((( 1260 +a: Output time (unit: seconds) 1261 + 1262 +The value ranges from 0 to 65535. 1263 + 1264 +When a=65535, PWM will always output. 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +b: Output frequency (unit: HZ) 1268 +))) 1269 +|(% style="width:242px" %)((( 1270 +c: Output duty cycle (unit: %) 1271 + 1272 +The value ranges from 0 to 100. 1273 +))) 1274 + 1275 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1276 + 1277 +Format: Command Code (0x0B01) followed by 6 bytes. 1278 + 1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1280 + 1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1283 + 1284 += 4. Battery & Power Cons = 1285 + 1286 + 1287 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1288 + 1065 1065 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1066 1066 1067 1067 ... ... @@ -1069,7 +1069,7 @@ 1069 1069 1070 1070 1071 1071 (% class="wikigeneratedid" %) 1072 -**User can change firmware SN50v3-LB to:** 1296 +**User can change firmware SN50v3-LB/LS to:** 1073 1073 1074 1074 * Change Frequency band/ region. 1075 1075 * Update with new features. ... ... @@ -1082,26 +1082,25 @@ 1082 1082 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1083 1083 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1084 1084 1085 - 1086 1086 = 6. FAQ = 1087 1087 1088 -== 6.1 Where can i find source code of SN50v3-LB? == 1311 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1089 1089 1090 1090 1091 1091 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1092 1092 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1093 1093 1317 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1094 1094 1095 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1096 1096 1097 - 1098 1098 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1099 1099 1100 1100 1101 -== 6.3 How to put several sensors to a SN50v3-LB? == 1323 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1102 1102 1103 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1104 1104 1326 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1327 + 1105 1105 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1106 1106 1107 1107 [[image:image-20230810121434-1.png||height="242" width="656"]] ... ... @@ -1110,7 +1110,7 @@ 1110 1110 = 7. Order Info = 1111 1111 1112 1112 1113 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or **SN50v3-LS-XX-YY** 1114 1114 1115 1115 (% style="color:red" %)**XX**(%%): The default frequency band 1116 1116 ... ... @@ -1130,13 +1130,12 @@ 1130 1130 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1131 1131 * (% style="color:red" %)**NH**(%%): No Hole 1132 1132 1133 - 1134 1134 = 8. Packing Info = 1135 1135 1136 1136 1137 1137 (% style="color:#037691" %)**Package Includes**: 1138 1138 1139 -* SN50v3-LB LoRaWAN Generic Node 1361 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1140 1140 1141 1141 (% style="color:#037691" %)**Dimension and weight**: 1142 1142 ... ... @@ -1145,7 +1145,6 @@ 1145 1145 * Package Size / pcs : cm 1146 1146 * Weight / pcs : g 1147 1147 1148 - 1149 1149 = 9. Support = 1150 1150 1151 1151
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content