Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, buildingautomation, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -470,7 +470,6 @@ 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -583,6 +583,78 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 584 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 585 + 586 + 587 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 588 + 589 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 590 + 591 + 592 +===== 2.3.2.10.a Uplink, PWM input capture ===== 593 + 594 + 595 +[[image:image-20230817172209-2.png||height="439" width="683"]] 596 + 597 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 598 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 599 +|Value|Bat|(% style="width:191px" %)((( 600 +Temperature(DS18B20)(PC13) 601 +)))|(% style="width:78px" %)((( 602 +ADC(PA4) 603 +)))|(% style="width:135px" %)((( 604 +PWM_Setting 605 + 606 +&Digital Interrupt(PA8) 607 +)))|(% style="width:70px" %)((( 608 +Pulse period 609 +)))|(% style="width:89px" %)((( 610 +Duration of high level 611 +))) 612 + 613 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 614 + 615 + 616 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 617 + 618 +**Frequency:** 619 + 620 +(% class="MsoNormal" %) 621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 622 + 623 +(% class="MsoNormal" %) 624 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 625 + 626 + 627 +(% class="MsoNormal" %) 628 +**Duty cycle:** 629 + 630 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 631 + 632 +[[image:image-20230818092200-1.png||height="344" width="627"]] 633 + 634 + 635 +===== 2.3.2.10.b Downlink, PWM output ===== 636 + 637 + 638 +[[image:image-20230817173800-3.png||height="412" width="685"]] 639 + 640 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 641 + 642 + xx xx xx is the output frequency, the unit is HZ. 643 + 644 + yy is the duty cycle of the output, the unit is %. 645 + 646 + zz zz is the time delay of the output, the unit is ms. 647 + 648 + 649 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 650 + 651 +The oscilloscope displays as follows: 652 + 653 +[[image:image-20230817173858-5.png||height="694" width="921"]] 654 + 655 + 586 586 === 2.3.3 Decode payload === 587 587 588 588 ... ... @@ -656,6 +656,10 @@ 656 656 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 657 657 658 658 729 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 730 + 731 +[[image:image-20230811113449-1.png||height="370" width="608"]] 732 + 659 659 ==== 2.3.3.5 Digital Interrupt ==== 660 660 661 661 ... ... @@ -802,9 +802,31 @@ 802 802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 803 803 804 804 805 -==== 2.3.3.12 W orkingMOD ====879 +==== 2.3.3.12 PWM MOD ==== 806 806 807 807 882 +* ((( 883 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 884 +))) 885 +* ((( 886 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 887 +))) 888 + 889 + [[image:image-20230817183249-3.png||height="320" width="417"]] 890 + 891 +* ((( 892 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 893 +))) 894 +* ((( 895 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 896 + 897 + 898 + 899 +))) 900 + 901 +==== 2.3.3.13 Working MOD ==== 902 + 903 + 808 808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 809 809 810 810 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -820,6 +820,7 @@ 820 820 * 6: MOD7 821 821 * 7: MOD8 822 822 * 8: MOD9 919 +* 9: MOD10 823 823 824 824 825 825 == 2.4 Payload Decoder file == ... ... @@ -1057,6 +1057,34 @@ 1057 1057 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1058 1058 1059 1059 1157 +=== 3.3.8 PWM setting === 1158 + 1159 + 1160 +Feature: Set the time acquisition unit for PWM input capture. 1161 + 1162 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1163 + 1164 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1165 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1166 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1167 +0(default) 1168 + 1169 +OK 1170 +))) 1171 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1172 +OK 1173 + 1174 +))) 1175 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1176 + 1177 +(% style="color:blue" %)**Downlink Command: 0x0C** 1178 + 1179 +Format: Command Code (0x0C) followed by 1 bytes. 1180 + 1181 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1182 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1183 + 1184 + 1060 1060 = 4. Battery & Power Consumption = 1061 1061 1062 1062 ... ... @@ -1100,6 +1100,7 @@ 1100 1100 1101 1101 == 6.3 How to put several sensors to a SN50v3-LB? == 1102 1102 1228 + 1103 1103 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1104 1104 1105 1105 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content