<
From version < 56.1 >
edited by Edwin Chen
on 2023/08/10 12:15
To version < 87.9 >
edited by Xiaoling
on 2024/01/03 11:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,16 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
52 52  * Operating Temperature: -40 ~~ 85°C
53 53  
54 54  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -109,12 +109,10 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
117 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
118 118  
119 119  
120 120  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -134,18 +134,23 @@
134 134  
135 135  == 1.8 Mechanical ==
136 136  
136 +=== 1.8.1 for LB version ===
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139 139  
140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141 141  
141 +
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 +=== 1.8.2 for LS version ===
144 144  
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
147 +
148 +
145 145  == 1.9 Hole Option ==
146 146  
147 147  
148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151 151  
... ... @@ -152,12 +152,12 @@
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153 153  
154 154  
155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
156 156  
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,9 +168,9 @@
168 168  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
172 172  
173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
174 174  
175 175  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
... ... @@ -199,10 +199,10 @@
199 199  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200 200  
201 201  
202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
203 203  
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
206 206  
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -227,7 +227,7 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
... ... @@ -283,7 +283,7 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
287 287  
288 288  For example:
289 289  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
296 296  
297 297  2. All modes share the same Payload Explanation from HERE.
298 298  
... ... @@ -473,7 +473,6 @@
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 -
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -586,6 +586,105 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
593 +
594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595 +
596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597 +
598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
599 +
600 +
601 +===== 2.3.2.10.a  Uplink, PWM input capture =====
602 +
603 +
604 +[[image:image-20230817172209-2.png||height="439" width="683"]]
605 +
606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
608 +|Value|Bat|(% style="width:191px" %)(((
609 +Temperature(DS18B20)(PC13)
610 +)))|(% style="width:78px" %)(((
611 +ADC(PA4)
612 +)))|(% style="width:135px" %)(((
613 +PWM_Setting
614 +&Digital Interrupt(PA8)
615 +)))|(% style="width:70px" %)(((
616 +Pulse period
617 +)))|(% style="width:89px" %)(((
618 +Duration of high level
619 +)))
620 +
621 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
622 +
623 +
624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
625 +
626 +**Frequency:**
627 +
628 +(% class="MsoNormal" %)
629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
630 +
631 +(% class="MsoNormal" %)
632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
633 +
634 +
635 +(% class="MsoNormal" %)
636 +**Duty cycle:**
637 +
638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639 +
640 +[[image:image-20230818092200-1.png||height="344" width="627"]]
641 +
642 +===== 2.3.2.10.b  Uplink, PWM output =====
643 +
644 +[[image:image-20230817172209-2.png||height="439" width="683"]]
645 +
646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 +
648 +a is the time delay of the output, the unit is ms.
649 +
650 +b is the output frequency, the unit is HZ.
651 +
652 +c is the duty cycle of the output, the unit is %.
653 +
654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 +
656 +aa is the time delay of the output, the unit is ms.
657 +
658 +bb is the output frequency, the unit is HZ.
659 +
660 +cc is the duty cycle of the output, the unit is %.
661 +
662 +
663 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 +
665 +The oscilloscope displays as follows:
666 +
667 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
668 +
669 +
670 +===== 2.3.2.10.c  Downlink, PWM output =====
671 +
672 +
673 +[[image:image-20230817173800-3.png||height="412" width="685"]]
674 +
675 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 +
677 + xx xx xx is the output frequency, the unit is HZ.
678 +
679 + yy is the duty cycle of the output, the unit is %.
680 +
681 + zz zz is the time delay of the output, the unit is ms.
682 +
683 +
684 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 +
686 +The oscilloscope displays as follows:
687 +
688 +[[image:image-20230817173858-5.png||height="694" width="921"]]
689 +
690 +
589 589  === 2.3.3  ​Decode payload ===
590 590  
591 591  
... ... @@ -595,13 +595,13 @@
595 595  
596 596  The payload decoder function for TTN V3 are here:
597 597  
598 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
700 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 599  
600 600  
601 601  ==== 2.3.3.1 Battery Info ====
602 602  
603 603  
604 -Check the battery voltage for SN50v3-LB.
706 +Check the battery voltage for SN50v3-LB/LS.
605 605  
606 606  Ex1: 0x0B45 = 2885mV
607 607  
... ... @@ -659,10 +659,14 @@
659 659  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
661 661  
764 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
765 +
766 +[[image:image-20230811113449-1.png||height="370" width="608"]]
767 +
662 662  ==== 2.3.3.5 Digital Interrupt ====
663 663  
664 664  
665 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
771 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
666 666  
667 667  (% style="color:blue" %)** Interrupt connection method:**
668 668  
... ... @@ -675,18 +675,18 @@
675 675  
676 676  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
677 677  
678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
784 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
679 679  
680 680  
681 681  (% style="color:blue" %)**Below is the installation example:**
682 682  
683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
789 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
684 684  
685 685  * (((
686 -One pin to SN50v3-LB's PA8 pin
792 +One pin to SN50v3-LB/LS's PA8 pin
687 687  )))
688 688  * (((
689 -The other pin to SN50v3-LB's VDD pin
795 +The other pin to SN50v3-LB/LS's VDD pin
690 690  )))
691 691  
692 692  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -722,7 +722,7 @@
722 722  
723 723  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
724 724  
725 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
831 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
726 726  
727 727  
728 728  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -756,7 +756,7 @@
756 756  
757 757  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
758 758  
759 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
865 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 760  
761 761  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
762 762  
... ... @@ -765,7 +765,7 @@
765 765  [[image:image-20230512173903-6.png||height="596" width="715"]]
766 766  
767 767  
768 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
874 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 769  
770 770  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
771 771  
... ... @@ -777,13 +777,13 @@
777 777  ==== 2.3.3.9  Battery Output - BAT pin ====
778 778  
779 779  
780 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
886 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
781 781  
782 782  
783 783  ==== 2.3.3.10  +5V Output ====
784 784  
785 785  
786 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
892 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
787 787  
788 788  The 5V output time can be controlled by AT Command.
789 789  
... ... @@ -805,9 +805,39 @@
805 805  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
806 806  
807 807  
808 -==== 2.3.3.12  Working MOD ====
914 +==== 2.3.3.12  PWM MOD ====
809 809  
810 810  
917 +* (((
918 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
919 +)))
920 +* (((
921 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
922 +)))
923 +
924 + [[image:image-20230817183249-3.png||height="320" width="417"]]
925 +
926 +* (((
927 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
928 +)))
929 +* (((
930 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
931 +)))
932 +* (((
933 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
934 +
935 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
936 +
937 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
938 +
939 +b) If the output duration is more than 30 seconds, better to use external power source. 
940 +)))
941 +
942 +
943 +
944 +==== 2.3.3.13  Working MOD ====
945 +
946 +
811 811  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812 812  
813 813  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -823,9 +823,8 @@
823 823  * 6: MOD7
824 824  * 7: MOD8
825 825  * 8: MOD9
962 +* 9: MOD10
826 826  
827 -
828 -
829 829  == 2.4 Payload Decoder file ==
830 830  
831 831  
... ... @@ -839,24 +839,22 @@
839 839  == 2.5 Frequency Plans ==
840 840  
841 841  
842 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
977 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
843 843  
844 844  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
845 845  
846 846  
847 -= 3. Configure SN50v3-LB =
982 += 3. Configure SN50v3-LB/LS =
848 848  
849 849  == 3.1 Configure Methods ==
850 850  
851 851  
852 -SN50v3-LB supports below configure method:
987 +SN50v3-LB/LS supports below configure method:
853 853  
854 854  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
855 855  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
856 856  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857 857  
858 -
859 -
860 860  == 3.2 General Commands ==
861 861  
862 862  
... ... @@ -870,10 +870,10 @@
870 870  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
871 871  
872 872  
873 -== 3.3 Commands special design for SN50v3-LB ==
1006 +== 3.3 Commands special design for SN50v3-LB/LS ==
874 874  
875 875  
876 -These commands only valid for SN50v3-LB, as below:
1009 +These commands only valid for SN50v3-LB/LS, as below:
877 877  
878 878  
879 879  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -904,8 +904,6 @@
904 904  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
905 905  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
906 906  
907 -
908 -
909 909  === 3.3.2 Get Device Status ===
910 910  
911 911  
... ... @@ -954,8 +954,6 @@
954 954  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
955 955  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
956 956  
957 -
958 -
959 959  === 3.3.4 Set Power Output Duration ===
960 960  
961 961  
... ... @@ -988,8 +988,6 @@
988 988  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
989 989  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
990 990  
991 -
992 -
993 993  === 3.3.5 Set Weighing parameters ===
994 994  
995 995  
... ... @@ -1015,8 +1015,6 @@
1015 1015  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1016 1016  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1017 1017  
1018 -
1019 -
1020 1020  === 3.3.6 Set Digital pulse count value ===
1021 1021  
1022 1022  
... ... @@ -1040,8 +1040,6 @@
1040 1040  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1041 1041  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1042 1042  
1043 -
1044 -
1045 1045  === 3.3.7 Set Workmode ===
1046 1046  
1047 1047  
... ... @@ -1066,13 +1066,103 @@
1066 1066  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1067 1067  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1068 1068  
1192 +(% id="H3.3.8PWMsetting" %)
1193 +=== 3.3.8 PWM setting ===
1069 1069  
1070 1070  
1071 -= 4. Battery & Power Consumption =
1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1072 1072  
1198 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1073 1073  
1074 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1200 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 +0(default)
1075 1075  
1205 +OK
1206 +)))
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 +OK
1209 +
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 +
1213 +(% style="color:blue" %)**Downlink Command: 0x0C**
1214 +
1215 +Format: Command Code (0x0C) followed by 1 bytes.
1216 +
1217 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 +
1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 +
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 +
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +
1229 +OK
1230 +)))
1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 +OK
1233 +
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 +
1238 +
1239 +)))|(% style="width:137px" %)(((
1240 +OK
1241 +)))
1242 +
1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 +AT+PWMOUT=a,b,c
1247 +
1248 +
1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 +Set PWM output time, output frequency and output duty cycle.
1251 +
1252 +(((
1253 +
1254 +)))
1255 +
1256 +(((
1257 +
1258 +)))
1259 +)))|(% style="width:242px" %)(((
1260 +a: Output time (unit: seconds)
1261 +
1262 +The value ranges from 0 to 65535.
1263 +
1264 +When a=65535, PWM will always output.
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +b: Output frequency (unit: HZ)
1268 +)))
1269 +|(% style="width:242px" %)(((
1270 +c: Output duty cycle (unit: %)
1271 +
1272 +The value ranges from 0 to 100.
1273 +)))
1274 +
1275 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 +
1277 +Format: Command Code (0x0B01) followed by 6 bytes.
1278 +
1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 +
1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 +
1284 += 4. Battery & Power Cons =
1285 +
1286 +
1287 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1288 +
1076 1076  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1077 1077  
1078 1078  
... ... @@ -1080,7 +1080,7 @@
1080 1080  
1081 1081  
1082 1082  (% class="wikigeneratedid" %)
1083 -**User can change firmware SN50v3-LB to:**
1296 +**User can change firmware SN50v3-LB/LS to:**
1084 1084  
1085 1085  * Change Frequency band/ region.
1086 1086  * Update with new features.
... ... @@ -1093,28 +1093,34 @@
1093 1093  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1094 1094  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1095 1095  
1096 -
1097 -
1098 1098  = 6. FAQ =
1099 1099  
1100 -== 6.1 Where can i find source code of SN50v3-LB? ==
1311 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1101 1101  
1102 1102  
1103 1103  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 1104  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1105 1105  
1317 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1106 1106  
1107 1107  
1108 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1320 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1109 1109  
1110 1110  
1111 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1323 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1112 1112  
1113 1113  
1326 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 +
1328 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 +
1330 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 +
1332 +
1114 1114  = 7. Order Info =
1115 1115  
1116 1116  
1117 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1118 1118  
1119 1119  (% style="color:red" %)**XX**(%%): The default frequency band
1120 1120  
... ... @@ -1134,14 +1134,12 @@
1134 1134  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1135 1135  * (% style="color:red" %)**NH**(%%): No Hole
1136 1136  
1137 -
1138 -
1139 1139  = 8. ​Packing Info =
1140 1140  
1141 1141  
1142 1142  (% style="color:#037691" %)**Package Includes**:
1143 1143  
1144 -* SN50v3-LB LoRaWAN Generic Node
1361 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1145 1145  
1146 1146  (% style="color:#037691" %)**Dimension and weight**:
1147 1147  
... ... @@ -1150,8 +1150,6 @@
1150 1150  * Package Size / pcs : cm
1151 1151  * Weight / pcs : g
1152 1152  
1153 -
1154 -
1155 1155  = 9. Support =
1156 1156  
1157 1157  
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0