<
From version < 56.1 >
edited by Edwin Chen
on 2023/08/10 12:15
To version < 77.1 >
edited by Mengting Qiu
on 2023/12/13 09:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.ting
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -473,7 +473,6 @@
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 -
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -586,6 +586,87 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
581 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 +
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 +
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 +
589 +
590 +===== 2.3.2.10.a  Uplink, PWM input capture =====
591 +
592 +
593 +[[image:image-20230817172209-2.png||height="439" width="683"]]
594 +
595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 +|Value|Bat|(% style="width:191px" %)(((
598 +Temperature(DS18B20)(PC13)
599 +)))|(% style="width:78px" %)(((
600 +ADC(PA4)
601 +)))|(% style="width:135px" %)(((
602 +PWM_Setting
603 +
604 +&Digital Interrupt(PA8)
605 +)))|(% style="width:70px" %)(((
606 +Pulse period
607 +)))|(% style="width:89px" %)(((
608 +Duration of high level
609 +)))
610 +
611 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 +
613 +
614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 +
616 +**Frequency:**
617 +
618 +(% class="MsoNormal" %)
619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 +
621 +(% class="MsoNormal" %)
622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 +
624 +
625 +(% class="MsoNormal" %)
626 +**Duty cycle:**
627 +
628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 +
630 +[[image:image-20230818092200-1.png||height="344" width="627"]]
631 +
632 +===== 2.3.2.10.b  Uplink, PWM output =====
633 +
634 +[[image:image-20230817172209-2.png||height="439" width="683"]]
635 +
636 +
637 +
638 +
639 +
640 +
641 +===== 2.3.2.10.c  Downlink, PWM output =====
642 +
643 +
644 +[[image:image-20230817173800-3.png||height="412" width="685"]]
645 +
646 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
647 +
648 + xx xx xx is the output frequency, the unit is HZ.
649 +
650 + yy is the duty cycle of the output, the unit is %.
651 +
652 + zz zz is the time delay of the output, the unit is ms.
653 +
654 +
655 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
656 +
657 +The oscilloscope displays as follows:
658 +
659 +[[image:image-20230817173858-5.png||height="694" width="921"]]
660 +
661 +
589 589  === 2.3.3  ​Decode payload ===
590 590  
591 591  
... ... @@ -659,6 +659,10 @@
659 659  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
661 661  
735 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
736 +
737 +[[image:image-20230811113449-1.png||height="370" width="608"]]
738 +
662 662  ==== 2.3.3.5 Digital Interrupt ====
663 663  
664 664  
... ... @@ -805,9 +805,40 @@
805 805  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
806 806  
807 807  
808 -==== 2.3.3.12  Working MOD ====
885 +==== 2.3.3.12  PWM MOD ====
809 809  
810 810  
888 +* (((
889 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
890 +)))
891 +* (((
892 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
893 +)))
894 +
895 + [[image:image-20230817183249-3.png||height="320" width="417"]]
896 +
897 +* (((
898 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
899 +)))
900 +* (((
901 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
902 +)))
903 +* (((
904 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
905 +
906 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
907 +
908 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
909 +
910 +b) If the output duration is more than 30 seconds, better to use external power source. 
911 +
912 +
913 +
914 +)))
915 +
916 +==== 2.3.3.13  Working MOD ====
917 +
918 +
811 811  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812 812  
813 813  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -823,9 +823,8 @@
823 823  * 6: MOD7
824 824  * 7: MOD8
825 825  * 8: MOD9
934 +* 9: MOD10
826 826  
827 -
828 -
829 829  == 2.4 Payload Decoder file ==
830 830  
831 831  
... ... @@ -855,8 +855,6 @@
855 855  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
856 856  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857 857  
858 -
859 -
860 860  == 3.2 General Commands ==
861 861  
862 862  
... ... @@ -904,8 +904,6 @@
904 904  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
905 905  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
906 906  
907 -
908 -
909 909  === 3.3.2 Get Device Status ===
910 910  
911 911  
... ... @@ -954,8 +954,6 @@
954 954  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
955 955  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
956 956  
957 -
958 -
959 959  === 3.3.4 Set Power Output Duration ===
960 960  
961 961  
... ... @@ -988,8 +988,6 @@
988 988  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
989 989  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
990 990  
991 -
992 -
993 993  === 3.3.5 Set Weighing parameters ===
994 994  
995 995  
... ... @@ -1015,8 +1015,6 @@
1015 1015  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1016 1016  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1017 1017  
1018 -
1019 -
1020 1020  === 3.3.6 Set Digital pulse count value ===
1021 1021  
1022 1022  
... ... @@ -1040,8 +1040,6 @@
1040 1040  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1041 1041  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1042 1042  
1043 -
1044 -
1045 1045  === 3.3.7 Set Workmode ===
1046 1046  
1047 1047  
... ... @@ -1066,11 +1066,101 @@
1066 1066  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1067 1067  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1068 1068  
1164 +(% id="H3.3.8PWMsetting" %)
1165 +=== 3.3.8 PWM setting ===
1069 1069  
1070 1070  
1071 -= 4. Battery & Power Consumption =
1168 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1072 1072  
1170 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1073 1073  
1172 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1173 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1174 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1175 +0(default)
1176 +
1177 +OK
1178 +)))
1179 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1180 +OK
1181 +
1182 +)))
1183 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1184 +
1185 +(% style="color:blue" %)**Downlink Command: 0x0C**
1186 +
1187 +Format: Command Code (0x0C) followed by 1 bytes.
1188 +
1189 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1190 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1191 +
1192 +
1193 +
1194 +(% class="mark" %)Feature: Set the time acquisition unit for PWM output.
1195 +
1196 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1197 +
1198 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1199 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1200 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1201 +0,0,0(default)
1202 +
1203 +OK
1204 +)))
1205 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1206 +OK
1207 +
1208 +)))
1209 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1210 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1211 +
1212 +
1213 +)))|(% style="width:137px" %)(((
1214 +OK
1215 +)))
1216 +
1217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1218 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1219 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1220 +AT+PWMOUT=a,b,c
1221 +
1222 +
1223 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1224 +Set PWM output time, output frequency and output duty cycle.(((
1225 +
1226 +)))
1227 +
1228 +(((
1229 +
1230 +)))
1231 +)))|(% style="width:242px" %)(((
1232 +a: Output time (unit: seconds)
1233 +
1234 +The value ranges from 0 to 65535.
1235 +
1236 +When a=65535, PWM will always output.
1237 +)))
1238 +|(% style="width:242px" %)(((
1239 +b: Output frequency (unit: HZ)
1240 +)))
1241 +|(% style="width:242px" %)(((
1242 +c: Output duty cycle (unit: %)
1243 +
1244 +The value ranges from 0 to 100.
1245 +)))
1246 +
1247 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1248 +
1249 +Format: Command Code (0x0B01) followed by 6 bytes.
1250 +
1251 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1252 +
1253 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1254 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1255 +
1256 += 4. Battery & Power Cons =
1257 +
1258 +
1074 1074  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1075 1075  
1076 1076  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1093,8 +1093,6 @@
1093 1093  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1094 1094  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1095 1095  
1096 -
1097 -
1098 1098  = 6. FAQ =
1099 1099  
1100 1100  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1103,8 +1103,6 @@
1103 1103  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 1104  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1105 1105  
1106 -
1107 -
1108 1108  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1109 1109  
1110 1110  
... ... @@ -1111,6 +1111,16 @@
1111 1111  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1112 1112  
1113 1113  
1295 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1296 +
1297 +
1298 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1299 +
1300 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1301 +
1302 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1303 +
1304 +
1114 1114  = 7. Order Info =
1115 1115  
1116 1116  
... ... @@ -1134,8 +1134,6 @@
1134 1134  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1135 1135  * (% style="color:red" %)**NH**(%%): No Hole
1136 1136  
1137 -
1138 -
1139 1139  = 8. ​Packing Info =
1140 1140  
1141 1141  
... ... @@ -1150,8 +1150,6 @@
1150 1150  * Package Size / pcs : cm
1151 1151  * Weight / pcs : g
1152 1152  
1153 -
1154 -
1155 1155  = 9. Support =
1156 1156  
1157 1157  
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0