<
From version < 56.1 >
edited by Edwin Chen
on 2023/08/10 12:15
To version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -42,7 +42,6 @@
42 42  * 8500mAh Battery for long term use
43 43  
44 44  
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -81,7 +81,6 @@
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 83  
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -110,7 +110,6 @@
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 112  
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -473,7 +473,6 @@
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 -
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -586,6 +586,78 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
584 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
585 +
586 +
587 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 +
589 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
590 +
591 +
592 +===== 2.3.2.10.a  Uplink, PWM input capture =====
593 +
594 +
595 +[[image:image-20230817172209-2.png||height="439" width="683"]]
596 +
597 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
599 +|Value|Bat|(% style="width:191px" %)(((
600 +Temperature(DS18B20)(PC13)
601 +)))|(% style="width:78px" %)(((
602 +ADC(PA4)
603 +)))|(% style="width:135px" %)(((
604 +PWM_Setting
605 +
606 +&Digital Interrupt(PA8)
607 +)))|(% style="width:70px" %)(((
608 +Pulse period
609 +)))|(% style="width:89px" %)(((
610 +Duration of high level
611 +)))
612 +
613 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
614 +
615 +
616 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
617 +
618 +**Frequency:**
619 +
620 +(% class="MsoNormal" %)
621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
622 +
623 +(% class="MsoNormal" %)
624 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
625 +
626 +
627 +(% class="MsoNormal" %)
628 +**Duty cycle:**
629 +
630 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
631 +
632 +[[image:image-20230818092200-1.png||height="344" width="627"]]
633 +
634 +
635 +===== 2.3.2.10.b  Downlink, PWM output =====
636 +
637 +
638 +[[image:image-20230817173800-3.png||height="412" width="685"]]
639 +
640 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
641 +
642 + xx xx xx is the output frequency, the unit is HZ.
643 +
644 + yy is the duty cycle of the output, the unit is %.
645 +
646 + zz zz is the time delay of the output, the unit is ms.
647 +
648 +
649 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
650 +
651 +The oscilloscope displays as follows:
652 +
653 +[[image:image-20230817173858-5.png||height="694" width="921"]]
654 +
655 +
589 589  === 2.3.3  ​Decode payload ===
590 590  
591 591  
... ... @@ -659,6 +659,10 @@
659 659  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
661 661  
729 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
730 +
731 +[[image:image-20230811113449-1.png||height="370" width="608"]]
732 +
662 662  ==== 2.3.3.5 Digital Interrupt ====
663 663  
664 664  
... ... @@ -805,9 +805,31 @@
805 805  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
806 806  
807 807  
808 -==== 2.3.3.12  Working MOD ====
879 +==== 2.3.3.12  PWM MOD ====
809 809  
810 810  
882 +* (((
883 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
884 +)))
885 +* (((
886 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
887 +)))
888 +
889 + [[image:image-20230817183249-3.png||height="320" width="417"]]
890 +
891 +* (((
892 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
893 +)))
894 +* (((
895 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
896 +
897 +
898 +
899 +)))
900 +
901 +==== 2.3.3.13  Working MOD ====
902 +
903 +
811 811  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812 812  
813 813  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -823,9 +823,9 @@
823 823  * 6: MOD7
824 824  * 7: MOD8
825 825  * 8: MOD9
919 +* 9: MOD10
826 826  
827 827  
828 -
829 829  == 2.4 Payload Decoder file ==
830 830  
831 831  
... ... @@ -856,7 +856,6 @@
856 856  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857 857  
858 858  
859 -
860 860  == 3.2 General Commands ==
861 861  
862 862  
... ... @@ -905,7 +905,6 @@
905 905  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
906 906  
907 907  
908 -
909 909  === 3.3.2 Get Device Status ===
910 910  
911 911  
... ... @@ -955,7 +955,6 @@
955 955  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
956 956  
957 957  
958 -
959 959  === 3.3.4 Set Power Output Duration ===
960 960  
961 961  
... ... @@ -989,7 +989,6 @@
989 989  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
990 990  
991 991  
992 -
993 993  === 3.3.5 Set Weighing parameters ===
994 994  
995 995  
... ... @@ -1016,7 +1016,6 @@
1016 1016  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1017 1017  
1018 1018  
1019 -
1020 1020  === 3.3.6 Set Digital pulse count value ===
1021 1021  
1022 1022  
... ... @@ -1041,7 +1041,6 @@
1041 1041  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1042 1042  
1043 1043  
1044 -
1045 1045  === 3.3.7 Set Workmode ===
1046 1046  
1047 1047  
... ... @@ -1067,7 +1067,34 @@
1067 1067  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1068 1068  
1069 1069  
1157 +=== 3.3.8 PWM setting ===
1070 1070  
1159 +
1160 +Feature: Set the time acquisition unit for PWM input capture.
1161 +
1162 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1163 +
1164 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1167 +0(default)
1168 +
1169 +OK
1170 +)))
1171 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1172 +OK
1173 +
1174 +)))
1175 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1176 +
1177 +(% style="color:blue" %)**Downlink Command: 0x0C**
1178 +
1179 +Format: Command Code (0x0C) followed by 1 bytes.
1180 +
1181 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183 +
1184 +
1071 1071  = 4. Battery & Power Consumption =
1072 1072  
1073 1073  
... ... @@ -1094,7 +1094,6 @@
1094 1094  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1095 1095  
1096 1096  
1097 -
1098 1098  = 6. FAQ =
1099 1099  
1100 1100  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1104,7 +1104,6 @@
1104 1104  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1105 1105  
1106 1106  
1107 -
1108 1108  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1109 1109  
1110 1110  
... ... @@ -1111,6 +1111,16 @@
1111 1111  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1112 1112  
1113 1113  
1226 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1227 +
1228 +
1229 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230 +
1231 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1232 +
1233 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1234 +
1235 +
1114 1114  = 7. Order Info =
1115 1115  
1116 1116  
... ... @@ -1135,7 +1135,6 @@
1135 1135  * (% style="color:red" %)**NH**(%%): No Hole
1136 1136  
1137 1137  
1138 -
1139 1139  = 8. ​Packing Info =
1140 1140  
1141 1141  
... ... @@ -1151,7 +1151,6 @@
1151 1151  * Weight / pcs : g
1152 1152  
1153 1153  
1154 -
1155 1155  = 9. Support =
1156 1156  
1157 1157  
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0