Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 7 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,11 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 - 49 49 (% style="color:#037691" %)**Common DC Characteristics:** 50 50 51 51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,11 +80,8 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 - 88 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 89 89 90 90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -109,8 +109,6 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 ... ... @@ -129,7 +129,7 @@ 129 129 == 1.7 Pin Definitions == 130 130 131 131 132 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 133 133 134 134 135 135 == 1.8 Mechanical == ... ... @@ -142,9 +142,8 @@ 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 144 145 -== 1.9Hole Option ==138 +== Hole Option == 146 146 147 - 148 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 149 149 150 150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -157,7 +157,7 @@ 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,7 +165,7 @@ 165 165 166 166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 167 167 168 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -222,44 +222,44 @@ 222 222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 223 223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 234 234 (% style="color:#037691" %)**Frequency Band**: 235 235 236 -0x01: EU868 228 +*0x01: EU868 237 237 238 -0x02: US915 230 +*0x02: US915 239 239 240 -0x03: IN865 232 +*0x03: IN865 241 241 242 -0x04: AU915 234 +*0x04: AU915 243 243 244 -0x05: KZ865 236 +*0x05: KZ865 245 245 246 -0x06: RU864 238 +*0x06: RU864 247 247 248 -0x07: AS923 240 +*0x07: AS923 249 249 250 -0x08: AS923-1 242 +*0x08: AS923-1 251 251 252 -0x09: AS923-2 244 +*0x09: AS923-2 253 253 254 -0x0a: AS923-3 246 +*0x0a: AS923-3 255 255 256 -0x0b: CN470 248 +*0x0b: CN470 257 257 258 -0x0c: EU433 250 +*0x0c: EU433 259 259 260 -0x0d: KR920 252 +*0x0d: KR920 261 261 262 -0x0e: MA869 254 +*0x0e: MA869 263 263 264 264 265 265 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -283,200 +283,186 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 287 287 288 288 For example: 289 289 290 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 291 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 296 296 297 -2. All modes share the same Payload Explanation from HERE. 298 - 299 -3. By default, the device will send an uplink message every 20 minutes. 300 - 301 - 302 302 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 303 303 304 - 305 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 -|Value|Bat|(% style="width:191px" %)((( 310 -Temperature(DS18B20)(PC13) 311 -)))|(% style="width:78px" %)((( 312 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 313 313 )))|(% style="width:216px" %)((( 314 -Digital in(PB15)&Digital Interrupt(PA8) 315 -)))|(% style="width:308px" %)((( 316 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 317 -)))|(% style="width:154px" %)((( 318 -Humidity(SHT20 or SHT31) 319 -))) 305 +Digital in & Digital Interrupt 320 320 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 321 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 322 322 323 323 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 - 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 -|Value|BAT|(% style="width:196px" %)((( 332 -Temperature(DS18B20)(PC13) 333 -)))|(% style="width:87px" %)((( 334 -ADC(PA4) 335 -)))|(% style="width:189px" %)((( 336 -Digital in(PB15) & Digital Interrupt(PA8) 337 -)))|(% style="width:208px" %)((( 338 -Distance measure by: 1) LIDAR-Lite V3HP 339 -Or 2) Ultrasonic Sensor 340 -)))|(% style="width:117px" %)Reserved 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 323 +Or 324 +2) Ultrasonic Sensor 325 +)))|Reserved 341 341 342 342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 343 343 329 +**Connection of LIDAR-Lite V3HP:** 344 344 345 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 346 - 347 347 [[image:image-20230512173758-5.png||height="563" width="712"]] 348 348 333 +**Connection to Ultrasonic Sensor:** 349 349 350 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 351 - 352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 353 - 354 354 [[image:image-20230512173903-6.png||height="596" width="715"]] 355 355 356 - 357 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 358 358 359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 -|Value|BAT|(% style="width:183px" %)((( 362 -Temperature(DS18B20)(PC13) 363 -)))|(% style="width:173px" %)((( 364 -Digital in(PB15) & Digital Interrupt(PA8) 365 -)))|(% style="width:84px" %)((( 366 -ADC(PA4) 367 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 368 368 Distance measure by:1)TF-Mini plus LiDAR 369 -Or 2) TF-Luna LiDAR 370 -)))|(% style="width:188px" %)Distance signal strength 344 +Or 345 +2) TF-Luna LiDAR 346 +)))|Distance signal strength 371 371 372 372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 373 373 374 - 375 375 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 376 376 377 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 378 378 379 379 [[image:image-20230512180609-7.png||height="555" width="802"]] 380 380 381 - 382 382 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 383 383 384 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 385 385 386 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 387 387 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 388 388 364 + 389 389 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 390 390 391 - 392 392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 393 393 394 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 395 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 396 396 **Size(bytes)** 397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 -|Value|(% style="width:68px" %)((( 399 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 400 400 )))|(% style="width:75px" %)((( 401 -ADC2(PA5) 402 -)))|((( 403 -ADC3(PA8) 404 -)))|((( 405 -Digital Interrupt(PB15) 406 -)))|(% style="width:304px" %)((( 407 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 408 -)))|(% style="width:163px" %)((( 409 -Humidity(SHT20 or SHT31) 410 -)))|(% style="width:53px" %)Bat 377 +ADC2 411 411 412 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 413 413 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 414 414 386 + 415 415 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 416 416 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 417 417 418 418 This mode has total 11 bytes. As shown below: 419 419 420 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 -|Value|BAT|(% style="width:186px" %)((( 423 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 424 424 )))|(% style="width:82px" %)((( 425 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 426 426 )))|(% style="width:210px" %)((( 427 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 428 428 )))|(% style="width:191px" %)Temperature2(DS18B20) 429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 430 430 431 431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 432 432 433 433 434 -[[image:image-20230513134006-1.png||height="559" width="736"]] 435 - 436 - 437 437 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 438 438 439 - 440 440 [[image:image-20230512164658-2.png||height="532" width="729"]] 441 441 442 442 Each HX711 need to be calibrated before used. User need to do below two steps: 443 443 444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 446 446 1. ((( 447 447 Weight has 4 bytes, the unit is g. 448 - 449 - 450 - 451 451 ))) 452 452 453 453 For example: 454 454 455 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 456 456 457 457 Response: Weight is 401 g 458 458 459 459 Check the response of this command and adjust the value to match the real value for thing. 460 460 461 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)462 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 463 463 **Size(bytes)** 464 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 465 -|Value|BAT|(% style="width:193px" %)((( 466 -Temperature(DS18B20)(PC13) 467 -)))|(% style="width:85px" %)((( 468 -ADC(PA4) 469 -)))|(% style="width:186px" %)((( 470 -Digital in(PB15) & Digital Interrupt(PA8) 471 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 472 472 473 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]440 +(PC13) 474 474 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 475 475 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 476 476 477 -==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 478 478 453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 479 479 455 + 456 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 457 + 480 480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 481 481 482 482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -483,112 +483,86 @@ 483 483 484 484 [[image:image-20230512181814-9.png||height="543" width="697"]] 485 485 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 486 486 487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 488 488 489 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 490 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 491 -|Value|BAT|(% style="width:256px" %)((( 492 -Temperature(DS18B20)(PC13) 493 -)))|(% style="width:108px" %)((( 494 -ADC(PA4) 495 -)))|(% style="width:126px" %)((( 496 -Digital in(PB15) 497 -)))|(% style="width:145px" %)((( 498 -Count(PA8) 499 -))) 500 - 501 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 502 502 503 503 504 504 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 505 505 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 506 506 507 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 508 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 509 509 **Size(bytes)** 510 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 511 -|Value|BAT|(% style="width:188px" %)((( 512 -Temperature(DS18B20) 513 -(PC13) 514 -)))|(% style="width:83px" %)((( 515 -ADC(PA5) 516 -)))|(% style="width:184px" %)((( 517 -Digital Interrupt1(PA8) 518 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 519 519 520 -[[image:image-20230513111203-7.png||height="324" width="975"]] 521 - 522 - 523 523 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 524 524 525 - 526 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 527 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 528 528 **Size(bytes)** 529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 530 -|Value|BAT|(% style="width:207px" %)((( 531 -Temperature(DS18B20) 532 -(PC13) 533 -)))|(% style="width:94px" %)((( 534 -ADC1(PA4) 535 -)))|(% style="width:198px" %)((( 536 -Digital Interrupt(PB15) 537 -)))|(% style="width:84px" %)((( 538 -ADC2(PA5) 539 -)))|(% style="width:82px" %)((( 540 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 541 541 ))) 542 542 543 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 544 544 545 545 546 546 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 547 547 548 - 549 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 550 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 551 551 **Size(bytes)** 552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 553 -|Value|BAT|((( 554 -Temperature 555 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 556 556 )))|((( 557 -Temperature2 558 -(DS18B20)(PB9) 512 +Temperature2(PA9) 559 559 )))|((( 560 -Digital Interrupt 561 -(PB15) 562 -)))|(% style="width:193px" %)((( 563 -Temperature3 564 -(DS18B20)(PB8) 565 -)))|(% style="width:78px" %)((( 566 -Count1(PA8) 567 -)))|(% style="width:78px" %)((( 568 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 569 569 ))) 570 570 571 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 572 572 573 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 574 574 575 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 576 576 577 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 578 578 579 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 580 580 534 +**AT+SETCNT=aa,bb** 581 581 582 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 583 583 584 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 585 585 586 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 587 587 588 588 589 589 === 2.3.3 Decode payload === 590 590 591 - 592 592 While using TTN V3 network, you can add the payload format to decode the payload. 593 593 594 594 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -595,14 +595,13 @@ 595 595 596 596 The payload decoder function for TTN V3 are here: 597 597 598 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 599 599 600 600 601 601 ==== 2.3.3.1 Battery Info ==== 602 602 555 +Check the battery voltage for SN50v3. 603 603 604 -Check the battery voltage for SN50v3-LB. 605 - 606 606 Ex1: 0x0B45 = 2885mV 607 607 608 608 Ex2: 0x0B49 = 2889mV ... ... @@ -610,18 +610,16 @@ 610 610 611 611 ==== 2.3.3.2 Temperature (DS18B20) ==== 612 612 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 613 613 614 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 615 615 616 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 617 617 618 -(% style="color:blue" %)**Connection:** 619 - 620 620 [[image:image-20230512180718-8.png||height="538" width="647"]] 621 621 572 +**Example**: 622 622 623 -(% style="color:blue" %)**Example**: 624 - 625 625 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 626 626 627 627 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -631,7 +631,6 @@ 631 631 632 632 ==== 2.3.3.3 Digital Input ==== 633 633 634 - 635 635 The digital input for pin PB15, 636 636 637 637 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -639,61 +639,51 @@ 639 639 640 640 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 641 641 ((( 642 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 643 - 644 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 645 - 646 - 590 +Note:The maximum voltage input supports 3.6V. 647 647 ))) 648 648 593 +(% class="wikigeneratedid" %) 649 649 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 650 650 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 651 651 652 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 653 - 654 654 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 655 655 656 656 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 657 657 658 658 659 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 660 - 661 - 662 662 ==== 2.3.3.5 Digital Interrupt ==== 663 663 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 664 664 665 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.607 +**~ Interrupt connection method:** 666 666 667 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 668 668 669 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 670 670 671 - 672 -(% style="color:blue" %)**Example to use with door sensor :** 673 - 674 674 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 675 675 676 676 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 677 677 678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 679 679 619 +**~ Below is the installation example:** 680 680 681 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 682 682 683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 684 - 685 685 * ((( 686 -One pin to SN50 v3-LB's PA8pin624 +One pin to LSN50's PB14 pin 687 687 ))) 688 688 * ((( 689 -The other pin to SN50 v3-LB's VDDpin627 +The other pin to LSN50's VCC pin 690 690 ))) 691 691 692 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 693 693 694 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 695 695 696 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 697 697 698 698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 699 699 ... ... @@ -703,33 +703,29 @@ 703 703 704 704 The command is: 705 705 706 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 707 707 708 708 Below shows some screen captures in TTN V3: 709 709 710 710 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 711 711 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 712 712 713 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 714 - 715 715 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 716 716 717 717 718 718 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 719 719 720 - 721 721 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 722 722 723 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 724 724 725 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LBwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 726 726 727 - 728 728 Below is the connection to SHT20/ SHT31. The connection is as below: 729 729 730 -[[image:image-202 30610170152-2.png||height="501" width="846"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 731 731 732 - 733 733 The device will be able to get the I2C sensor data now and upload to IoT Server. 734 734 735 735 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -747,26 +747,20 @@ 747 747 748 748 ==== 2.3.3.7 Distance Reading ==== 749 749 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 750 750 751 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 752 752 753 - 754 754 ==== 2.3.3.8 Ultrasonic Sensor ==== 755 755 756 - 757 757 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 758 758 759 -The SN50 v3-LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 760 760 761 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 762 - 763 763 The picture below shows the connection: 764 764 765 -[[image:image-20230512173903-6.png||height="596" width="715"]] 766 766 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 767 767 768 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 769 - 770 770 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 771 771 772 772 **Example:** ... ... @@ -773,41 +773,50 @@ 773 773 774 774 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 775 775 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 776 776 777 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 778 778 708 +You can see the serial output in ULT mode as below: 779 779 780 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 781 781 712 +**In TTN V3 server:** 782 782 783 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 784 784 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 785 785 786 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 787 787 720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 721 + 722 + 723 +==== 2.3.3.10 +5V Output ==== 724 + 725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 726 + 788 788 The 5V output time can be controlled by AT Command. 789 789 790 - (% style="color:blue" %)**AT+5VT=1000**729 +**AT+5VT=1000** 791 791 792 792 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 793 793 794 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 795 795 796 796 736 + 797 797 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 798 798 799 - 800 800 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 801 801 802 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 803 803 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 804 804 805 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 806 806 807 - 808 808 ==== 2.3.3.12 Working MOD ==== 809 809 810 - 811 811 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 812 812 813 813 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -820,12 +820,7 @@ 820 820 * 3: MOD4 821 821 * 4: MOD5 822 822 * 5: MOD6 823 -* 6: MOD7 824 -* 7: MOD8 825 -* 8: MOD9 826 826 827 - 828 - 829 829 == 2.4 Payload Decoder file == 830 830 831 831 ... ... @@ -833,9 +833,10 @@ 833 833 834 834 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 835 835 836 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 837 837 838 838 771 + 839 839 == 2.5 Frequency Plans == 840 840 841 841 ... ... @@ -855,8 +855,6 @@ 855 855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 - 859 - 860 860 == 3.2 General Commands == 861 861 862 862 ... ... @@ -873,7 +873,7 @@ 873 873 == 3.3 Commands special design for SN50v3-LB == 874 874 875 875 876 -These commands only valid for S N50v3-LB, as below:807 +These commands only valid for S31x-LB, as below: 877 877 878 878 879 879 === 3.3.1 Set Transmit Interval Time === ... ... @@ -884,7 +884,7 @@ 884 884 (% style="color:blue" %)**AT Command: AT+TDC** 885 885 886 886 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 887 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 888 888 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 889 889 30000 890 890 OK ... ... @@ -904,33 +904,30 @@ 904 904 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 905 905 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 906 906 907 - 908 - 909 909 === 3.3.2 Get Device Status === 910 910 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 911 911 912 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 913 913 914 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 915 915 916 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 917 917 847 +=== 3.3.7 Set Interrupt Mode === 918 918 919 -=== 3.3.3 Set Interrupt Mode === 920 920 921 - 922 922 Feature, Set Interrupt mode for GPIO_EXIT. 923 923 924 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 925 925 926 926 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 927 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**928 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 929 929 0 930 930 OK 931 931 the mode is 0 =Disable Interrupt 932 932 ))) 933 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 934 934 Set Transmit Interval 935 935 0. (Disable Interrupt), 936 936 ~1. (Trigger by rising and falling edge) ... ... @@ -937,11 +937,6 @@ 937 937 2. (Trigger by falling edge) 938 938 3. (Trigger by rising edge) 939 939 )))|(% style="width:157px" %)OK 940 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 941 -Set Transmit Interval 942 -trigger by rising edge. 943 -)))|(% style="width:157px" %)OK 944 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 945 945 946 946 (% style="color:blue" %)**Downlink Command: 0x06** 947 947 ... ... @@ -949,125 +949,9 @@ 949 949 950 950 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 951 951 952 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 953 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 954 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 955 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 956 956 957 - 958 - 959 -=== 3.3.4 Set Power Output Duration === 960 - 961 - 962 -Control the output duration 5V . Before each sampling, device will 963 - 964 -~1. first enable the power output to external sensor, 965 - 966 -2. keep it on as per duration, read sensor value and construct uplink payload 967 - 968 -3. final, close the power output. 969 - 970 -(% style="color:blue" %)**AT Command: AT+5VT** 971 - 972 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 973 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 974 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 975 -500(default) 976 -OK 977 -))) 978 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 979 -Close after a delay of 1000 milliseconds. 980 -)))|(% style="width:157px" %)OK 981 - 982 -(% style="color:blue" %)**Downlink Command: 0x07** 983 - 984 -Format: Command Code (0x07) followed by 2 bytes. 985 - 986 -The first and second bytes are the time to turn on. 987 - 988 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 989 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 990 - 991 - 992 - 993 -=== 3.3.5 Set Weighing parameters === 994 - 995 - 996 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 997 - 998 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 999 - 1000 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1001 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1002 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1003 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1004 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1005 - 1006 -(% style="color:blue" %)**Downlink Command: 0x08** 1007 - 1008 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1009 - 1010 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1011 - 1012 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1013 - 1014 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1015 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1016 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1017 - 1018 - 1019 - 1020 -=== 3.3.6 Set Digital pulse count value === 1021 - 1022 - 1023 -Feature: Set the pulse count value. 1024 - 1025 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1026 - 1027 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1028 - 1029 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1030 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1031 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1032 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1033 - 1034 -(% style="color:blue" %)**Downlink Command: 0x09** 1035 - 1036 -Format: Command Code (0x09) followed by 5 bytes. 1037 - 1038 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1039 - 1040 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1041 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1042 - 1043 - 1044 - 1045 -=== 3.3.7 Set Workmode === 1046 - 1047 - 1048 -Feature: Switch working mode. 1049 - 1050 -(% style="color:blue" %)**AT Command: AT+MOD** 1051 - 1052 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1053 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1054 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1055 -OK 1056 -))) 1057 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1058 -OK 1059 -Attention:Take effect after ATZ 1060 -))) 1061 - 1062 -(% style="color:blue" %)**Downlink Command: 0x0A** 1063 - 1064 -Format: Command Code (0x0A) followed by 1 bytes. 1065 - 1066 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1067 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1068 - 1069 - 1070 - 1071 1071 = 4. Battery & Power Consumption = 1072 1072 1073 1073 ... ... @@ -1080,31 +1080,28 @@ 1080 1080 1081 1081 1082 1082 (% class="wikigeneratedid" %) 1083 - **User can change firmware SN50v3-LB to:**890 +User can change firmware SN50v3-LB to: 1084 1084 1085 1085 * Change Frequency band/ region. 1086 1086 * Update with new features. 1087 1087 * Fix bugs. 1088 1088 1089 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1090 1090 1091 -**Methods to Update Firmware:** 1092 1092 1093 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1094 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 899 +Methods to Update Firmware: 1095 1095 901 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1096 1096 1097 - 1098 1098 = 6. FAQ = 1099 1099 1100 1100 == 6.1 Where can i find source code of SN50v3-LB? == 1101 1101 1102 - 1103 1103 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1104 1104 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1105 1105 1106 1106 1107 - 1108 1108 = 7. Order Info = 1109 1109 1110 1110 ... ... @@ -1128,11 +1128,8 @@ 1128 1128 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1129 1129 * (% style="color:red" %)**NH**(%%): No Hole 1130 1130 1131 - 1132 - 1133 1133 = 8. Packing Info = 1134 1134 1135 - 1136 1136 (% style="color:#037691" %)**Package Includes**: 1137 1137 1138 1138 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1144,11 +1144,8 @@ 1144 1144 * Package Size / pcs : cm 1145 1145 * Weight / pcs : g 1146 1146 1147 - 1148 - 1149 1149 = 9. Support = 1150 1150 1151 1151 1152 1152 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1153 - 1154 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content