<
From version < 53.3 >
edited by Xiaoling
on 2023/06/15 09:04
To version < 43.40 >
edited by Xiaoling
on 2023/05/16 15:00
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,7 +30,6 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -142,7 +142,7 @@
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 144  
145 -== 1.9 Hole Option ==
138 +== Hole Option ==
146 146  
147 147  
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -222,44 +222,44 @@
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 223  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -0x01: EU868
229 +*0x01: EU868
237 237  
238 -0x02: US915
231 +*0x02: US915
239 239  
240 -0x03: IN865
233 +*0x03: IN865
241 241  
242 -0x04: AU915
235 +*0x04: AU915
243 243  
244 -0x05: KZ865
237 +*0x05: KZ865
245 245  
246 -0x06: RU864
239 +*0x06: RU864
247 247  
248 -0x07: AS923
241 +*0x07: AS923
249 249  
250 -0x08: AS923-1
243 +*0x08: AS923-1
251 251  
252 -0x09: AS923-2
245 +*0x09: AS923-2
253 253  
254 -0x0a: AS923-3
247 +*0x0a: AS923-3
255 255  
256 -0x0b: CN470
249 +*0x0b: CN470
257 257  
258 -0x0c: EU433
251 +*0x0c: EU433
259 259  
260 -0x0d: KR920
253 +*0x0d: KR920
261 261  
262 -0x0e: MA869
255 +*0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,22 +283,19 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 +1. All modes share the same Payload Explanation from HERE.
290 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 -
299 -3. By default, the device will send an uplink message every 20 minutes.
300 -
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 304  
... ... @@ -305,8 +305,8 @@
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 307  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 -|Value|Bat|(% style="width:191px" %)(((
298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 +|**Value**|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
312 312  ADC(PA4)
... ... @@ -323,12 +323,11 @@
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|Value|BAT|(% style="width:196px" %)(((
319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 +|**Value**|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
334 334  ADC(PA4)
... ... @@ -335,30 +335,27 @@
335 335  )))|(% style="width:189px" %)(((
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by: 1) LIDAR-Lite V3HP
327 +Distance measure by:1) LIDAR-Lite V3HP
339 339  Or 2) Ultrasonic Sensor
340 340  )))|(% style="width:117px" %)Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
344 -
345 345  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 346  
347 347  [[image:image-20230512173758-5.png||height="563" width="712"]]
348 348  
349 -
350 350  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 351  
352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 353  
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 359  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|Value|BAT|(% style="width:183px" %)(((
346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 +|**Value**|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
364 364  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -366,36 +366,34 @@
366 366  ADC(PA4)
367 367  )))|(% style="width:323px" %)(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 2) TF-Luna LiDAR
355 +Or 
356 +2) TF-Luna LiDAR
370 370  )))|(% style="width:188px" %)Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
374 -
375 375  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378 378  
379 379  [[image:image-20230512180609-7.png||height="555" width="802"]]
380 380  
381 -
382 382  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383 383  
384 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
385 385  
386 -[[image:image-20230610170047-1.png||height="452" width="799"]]
371 +[[image:image-20230513105207-4.png||height="469" width="802"]]
387 387  
388 388  
389 389  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390 390  
391 -
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 394  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 395  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 -|Value|(% style="width:68px" %)(((
381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 +|**Value**|(% style="width:68px" %)(((
399 399  ADC1(PA4)
400 400  )))|(% style="width:75px" %)(((
401 401  ADC2(PA5)
... ... @@ -418,8 +418,8 @@
418 418  This mode has total 11 bytes. As shown below:
419 419  
420 420  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 -|Value|BAT|(% style="width:186px" %)(((
405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 +|**Value**|BAT|(% style="width:186px" %)(((
423 423  Temperature1(DS18B20)(PC13)
424 424  )))|(% style="width:82px" %)(((
425 425  ADC(PA4)
... ... @@ -430,29 +430,24 @@
430 430  
431 431  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432 432  
433 -
434 434  [[image:image-20230513134006-1.png||height="559" width="736"]]
435 435  
436 436  
437 437  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 438  
439 -
440 440  [[image:image-20230512164658-2.png||height="532" width="729"]]
441 441  
442 442  Each HX711 need to be calibrated before used. User need to do below two steps:
443 443  
444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 446  1. (((
447 447  Weight has 4 bytes, the unit is g.
448 -
449 -
450 -
451 451  )))
452 452  
453 453  For example:
454 454  
455 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
434 +**AT+GETSENSORVALUE =0**
456 456  
457 457  Response:  Weight is 401 g
458 458  
... ... @@ -462,21 +462,21 @@
462 462  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
463 463  **Size(bytes)**
464 464  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 -|Value|BAT|(% style="width:193px" %)(((
466 -Temperature(DS18B20)(PC13)
444 +|**Value**|BAT|(% style="width:193px" %)(((
445 +Temperature(DS18B20)
446 +(PC13)
467 467  )))|(% style="width:85px" %)(((
468 468  ADC(PA4)
469 469  )))|(% style="width:186px" %)(((
470 -Digital in(PB15) & Digital Interrupt(PA8)
450 +Digital in(PB15) &
451 +Digital Interrupt(PA8)
471 471  )))|(% style="width:100px" %)Weight
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 -
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 -
480 480  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481 481  
482 482  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -483,12 +483,11 @@
483 483  
484 484  [[image:image-20230512181814-9.png||height="543" width="697"]]
485 485  
465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
486 486  
487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488 -
489 489  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
491 -|Value|BAT|(% style="width:256px" %)(((
468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 +|**Value**|BAT|(% style="width:256px" %)(((
492 492  Temperature(DS18B20)(PC13)
493 493  )))|(% style="width:108px" %)(((
494 494  ADC(PA4)
... ... @@ -503,12 +503,11 @@
503 503  
504 504  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 505  
506 -
507 507  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
508 508  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
509 509  **Size(bytes)**
510 510  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 -|Value|BAT|(% style="width:188px" %)(((
488 +|**Value**|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
513 513  (PC13)
514 514  )))|(% style="width:83px" %)(((
... ... @@ -519,15 +519,13 @@
519 519  
520 520  [[image:image-20230513111203-7.png||height="324" width="975"]]
521 521  
522 -
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 -
526 526  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 527  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 -|Value|BAT|(% style="width:207px" %)(((
504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 +|**Value**|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
532 532  (PC13)
533 533  )))|(% style="width:94px" %)(((
... ... @@ -545,23 +545,22 @@
545 545  
546 546  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 547  
548 -
549 549  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 550  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 -|Value|BAT|(((
554 -Temperature
555 -(DS18B20)(PC13)
526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 +|**Value**|BAT|(((
528 +Temperature1(DS18B20)
529 +(PC13)
556 556  )))|(((
557 -Temperature2
558 -(DS18B20)(PB9)
531 +Temperature2(DS18B20)
532 +(PB9)
559 559  )))|(((
560 560  Digital Interrupt
561 561  (PB15)
562 562  )))|(% style="width:193px" %)(((
563 -Temperature3
564 -(DS18B20)(PB8)
537 +Temperature3(DS18B20)
538 +(PB8)
565 565  )))|(% style="width:78px" %)(((
566 566  Count1(PA8)
567 567  )))|(% style="width:78px" %)(((
... ... @@ -572,23 +572,22 @@
572 572  
573 573  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
574 574  
575 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
549 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
576 576  
577 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
551 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
578 578  
579 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
553 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
580 580  
555 +**AT+SETCNT=aa,bb** 
581 581  
582 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 -
584 584  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
585 585  
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
562 +
589 589  === 2.3.3  ​Decode payload ===
590 590  
591 -
592 592  While using TTN V3 network, you can add the payload format to decode the payload.
593 593  
594 594  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -595,14 +595,13 @@
595 595  
596 596  The payload decoder function for TTN V3 are here:
597 597  
598 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
571 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 599  
600 600  
601 601  ==== 2.3.3.1 Battery Info ====
602 602  
576 +Check the battery voltage for SN50v3.
603 603  
604 -Check the battery voltage for SN50v3-LB.
605 -
606 606  Ex1: 0x0B45 = 2885mV
607 607  
608 608  Ex2: 0x0B49 = 2889mV
... ... @@ -610,18 +610,16 @@
610 610  
611 611  ==== 2.3.3.2  Temperature (DS18B20) ====
612 612  
613 -
614 614  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
615 615  
616 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
587 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
617 617  
618 -(% style="color:blue" %)**Connection:**
589 +**Connection:**
619 619  
620 620  [[image:image-20230512180718-8.png||height="538" width="647"]]
621 621  
593 +**Example**:
622 622  
623 -(% style="color:blue" %)**Example**:
624 -
625 625  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
626 626  
627 627  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -631,7 +631,6 @@
631 631  
632 632  ==== 2.3.3.3 Digital Input ====
633 633  
634 -
635 635  The digital input for pin PB15,
636 636  
637 637  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -641,34 +641,28 @@
641 641  (((
642 642  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
643 643  
644 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
645 -
646 -
613 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
647 647  )))
648 648  
649 649  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
650 650  
618 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
651 651  
652 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
620 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
653 653  
654 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
655 -
656 656  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
657 657  
624 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
658 658  
659 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
661 -
662 662  ==== 2.3.3.5 Digital Interrupt ====
663 663  
629 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
664 664  
665 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
631 +(% style="color:blue" %)**~ Interrupt connection method:**
666 666  
667 -(% style="color:blue" %)** Interrupt connection method:**
668 -
669 669  [[image:image-20230513105351-5.png||height="147" width="485"]]
670 670  
671 -
672 672  (% style="color:blue" %)**Example to use with door sensor :**
673 673  
674 674  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -675,23 +675,22 @@
675 675  
676 676  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
677 677  
678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
641 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
679 679  
643 +(% style="color:blue" %)**~ Below is the installation example:**
680 680  
681 -(% style="color:blue" %)**Below is the installation example:**
645 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
682 682  
683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
684 -
685 685  * (((
686 -One pin to SN50v3-LB's PA8 pin
648 +One pin to SN50_v3's PA8 pin
687 687  )))
688 688  * (((
689 -The other pin to SN50v3-LB's VDD pin
651 +The other pin to SN50_v3's VDD pin
690 690  )))
691 691  
692 692  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
693 693  
694 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
656 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
695 695  
696 696  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
697 697  
... ... @@ -703,32 +703,29 @@
703 703  
704 704  The command is:
705 705  
706 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
668 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
707 707  
708 708  Below shows some screen captures in TTN V3:
709 709  
710 710  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
711 711  
674 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
712 712  
713 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
714 -
715 715  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
716 716  
717 717  
718 718  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
719 719  
720 -
721 721  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
722 722  
723 723  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
724 724  
725 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
685 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
726 726  
727 -
728 728  Below is the connection to SHT20/ SHT31. The connection is as below:
729 729  
730 -[[image:image-20230610170152-2.png||height="501" width="846"]]
731 731  
690 +[[image:image-20230513103633-3.png||height="448" width="716"]]
732 732  
733 733  The device will be able to get the I2C sensor data now and upload to IoT Server.
734 734  
... ... @@ -747,26 +747,23 @@
747 747  
748 748  ==== 2.3.3.7  ​Distance Reading ====
749 749  
709 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
750 750  
751 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
752 752  
753 -
754 754  ==== 2.3.3.8 Ultrasonic Sensor ====
755 755  
756 -
757 757  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
758 758  
759 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
716 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 760  
761 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
718 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
762 762  
763 763  The picture below shows the connection:
764 764  
765 765  [[image:image-20230512173903-6.png||height="596" width="715"]]
766 766  
724 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
767 767  
768 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 -
770 770  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
771 771  
772 772  **Example:**
... ... @@ -774,17 +774,16 @@
774 774  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
775 775  
776 776  
733 +
777 777  ==== 2.3.3.9  Battery Output - BAT pin ====
778 778  
736 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
779 779  
780 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
781 781  
782 -
783 783  ==== 2.3.3.10  +5V Output ====
784 784  
741 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
785 785  
786 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 -
788 788  The 5V output time can be controlled by AT Command.
789 789  
790 790  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -791,23 +791,21 @@
791 791  
792 792  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
793 793  
794 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
749 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
795 795  
796 796  
752 +
797 797  ==== 2.3.3.11  BH1750 Illumination Sensor ====
798 798  
799 -
800 800  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
801 801  
802 802  [[image:image-20230512172447-4.png||height="416" width="712"]]
803 803  
804 -
805 805  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
806 806  
807 807  
808 808  ==== 2.3.3.12  Working MOD ====
809 809  
810 -
811 811  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812 812  
813 813  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -836,6 +836,7 @@
836 836  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
837 837  
838 838  
792 +
839 839  == 2.5 Frequency Plans ==
840 840  
841 841  
... ... @@ -855,8 +855,6 @@
855 855  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
856 856  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857 857  
858 -
859 -
860 860  == 3.2 General Commands ==
861 861  
862 862  
... ... @@ -873,18 +873,17 @@
873 873  == 3.3 Commands special design for SN50v3-LB ==
874 874  
875 875  
876 -These commands only valid for SN50v3-LB, as below:
828 +These commands only valid for S31x-LB, as below:
877 877  
878 878  
879 879  === 3.3.1 Set Transmit Interval Time ===
880 880  
881 -
882 882  Feature: Change LoRaWAN End Node Transmit Interval.
883 883  
884 884  (% style="color:blue" %)**AT Command: AT+TDC**
885 885  
886 886  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
887 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
838 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
888 888  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
889 889  30000
890 890  OK
... ... @@ -908,23 +908,21 @@
908 908  
909 909  === 3.3.2 Get Device Status ===
910 910  
911 -
912 912  Send a LoRaWAN downlink to ask the device to send its status.
913 913  
914 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
864 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
915 915  
916 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
866 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
917 917  
918 918  
919 919  === 3.3.3 Set Interrupt Mode ===
920 920  
921 -
922 922  Feature, Set Interrupt mode for GPIO_EXIT.
923 923  
924 924  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
925 925  
926 926  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
927 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
876 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
928 928  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
929 929  0
930 930  OK
... ... @@ -939,6 +939,7 @@
939 939  )))|(% style="width:157px" %)OK
940 940  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
941 941  Set Transmit Interval
891 +
942 942  trigger by rising edge.
943 943  )))|(% style="width:157px" %)OK
944 944  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -958,7 +958,6 @@
958 958  
959 959  === 3.3.4 Set Power Output Duration ===
960 960  
961 -
962 962  Control the output duration 5V . Before each sampling, device will
963 963  
964 964  ~1. first enable the power output to external sensor,
... ... @@ -970,7 +970,7 @@
970 970  (% style="color:blue" %)**AT Command: AT+5VT**
971 971  
972 972  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
922 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
974 974  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
975 975  500(default)
976 976  OK
... ... @@ -992,13 +992,12 @@
992 992  
993 993  === 3.3.5 Set Weighing parameters ===
994 994  
995 -
996 996  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
997 997  
998 998  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
999 999  
1000 1000  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
949 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1002 1002  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1003 1003  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1004 1004  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1019,7 +1019,6 @@
1019 1019  
1020 1020  === 3.3.6 Set Digital pulse count value ===
1021 1021  
1022 -
1023 1023  Feature: Set the pulse count value.
1024 1024  
1025 1025  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1027,7 +1027,7 @@
1027 1027  (% style="color:blue" %)**AT Command: AT+SETCNT**
1028 1028  
1029 1029  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1030 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
977 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1031 1031  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1032 1032  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1033 1033  
... ... @@ -1044,13 +1044,12 @@
1044 1044  
1045 1045  === 3.3.7 Set Workmode ===
1046 1046  
1047 -
1048 1048  Feature: Switch working mode.
1049 1049  
1050 1050  (% style="color:blue" %)**AT Command: AT+MOD**
1051 1051  
1052 1052  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
999 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1054 1054  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1055 1055  OK
1056 1056  )))
... ... @@ -1080,31 +1080,27 @@
1080 1080  
1081 1081  
1082 1082  (% class="wikigeneratedid" %)
1083 -**User can change firmware SN50v3-LB to:**
1029 +User can change firmware SN50v3-LB to:
1084 1084  
1085 1085  * Change Frequency band/ region.
1086 1086  * Update with new features.
1087 1087  * Fix bugs.
1088 1088  
1089 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1035 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1090 1090  
1091 -**Methods to Update Firmware:**
1092 1092  
1093 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1094 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1038 +Methods to Update Firmware:
1095 1095  
1040 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1041 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1096 1096  
1097 -
1098 1098  = 6. FAQ =
1099 1099  
1100 1100  == 6.1 Where can i find source code of SN50v3-LB? ==
1101 1101  
1102 -
1103 1103  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 1104  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1105 1105  
1106 -
1107 -
1108 1108  = 7. Order Info =
1109 1109  
1110 1110  
... ... @@ -1128,11 +1128,8 @@
1128 1128  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1129 1129  * (% style="color:red" %)**NH**(%%): No Hole
1130 1130  
1131 -
1132 -
1133 1133  = 8. ​Packing Info =
1134 1134  
1135 -
1136 1136  (% style="color:#037691" %)**Package Includes**:
1137 1137  
1138 1138  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1144,8 +1144,6 @@
1144 1144  * Package Size / pcs : cm
1145 1145  * Weight / pcs : g
1146 1146  
1147 -
1148 -
1149 1149  = 9. Support =
1150 1150  
1151 1151  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0