<
From version < 53.2 >
edited by Xiaoling
on 2023/06/15 08:45
To version < 87.42 >
edited by Xiaoling
on 2024/01/24 15:52
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,16 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
52 52  * Operating Temperature: -40 ~~ 85°C
53 53  
54 54  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,11 +93,10 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
97 97  
98 -
99 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -109,12 +109,10 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
117 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
118 118  
119 119  
120 120  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -134,18 +134,23 @@
134 134  
135 135  == 1.8 Mechanical ==
136 136  
135 +=== 1.8.1 for LB version ===
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139 139  
140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141 141  
140 +
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
143 +=== 1.8.2 for LS version ===
144 144  
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 +
147 +
145 145  == 1.9 Hole Option ==
146 146  
147 147  
148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151 151  
... ... @@ -152,12 +152,12 @@
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153 153  
154 154  
155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
156 156  
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,9 +168,9 @@
168 168  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
172 172  
173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
174 174  
175 175  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
... ... @@ -198,12 +198,10 @@
198 198  
199 199  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200 200  
204 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
201 201  
202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
203 203  
204 -
205 -Press the button for 5 seconds to activate the SN50v3-LB.
206 -
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
209 209  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -214,13 +214,13 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
221 221  
222 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
223 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 225  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
... ... @@ -227,7 +227,7 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
... ... @@ -283,7 +283,7 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
287 287  
288 288  For example:
289 289  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
296 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
296 296  
297 297  2. All modes share the same Payload Explanation from HERE.
298 298  
... ... @@ -304,8 +304,8 @@
304 304  
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
308 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
309 309  |Value|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
... ... @@ -326,8 +326,8 @@
326 326  
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
330 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
331 331  |Value|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
... ... @@ -356,8 +356,8 @@
356 356  
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
360 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
361 361  |Value|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
... ... @@ -366,8 +366,7 @@
366 366  ADC(PA4)
367 367  )))|(% style="width:323px" %)(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 
370 -2) TF-Luna LiDAR
370 +Or 2) TF-Luna LiDAR
371 371  )))|(% style="width:188px" %)Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -392,10 +392,10 @@
392 392  
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
395 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 399  |Value|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
... ... @@ -418,8 +418,8 @@
418 418  
419 419  This mode has total 11 bytes. As shown below:
420 420  
421 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
421 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 423  |Value|BAT|(% style="width:186px" %)(((
424 424  Temperature1(DS18B20)(PC13)
425 425  )))|(% style="width:82px" %)(((
... ... @@ -459,10 +459,10 @@
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
463 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
462 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
464 464  **Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 466  |Value|BAT|(% style="width:193px" %)(((
467 467  Temperature(DS18B20)(PC13)
468 468  )))|(% style="width:85px" %)(((
... ... @@ -474,7 +474,6 @@
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
476 476  
477 -
478 478  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
479 479  
480 480  
... ... @@ -487,8 +487,8 @@
487 487  
488 488  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
489 489  
490 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
491 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
492 492  |Value|BAT|(% style="width:256px" %)(((
493 493  Temperature(DS18B20)(PC13)
494 494  )))|(% style="width:108px" %)(((
... ... @@ -505,10 +505,10 @@
505 505  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506 506  
507 507  
508 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
509 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
507 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
510 510  **Size(bytes)**
511 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
512 512  |Value|BAT|(% style="width:188px" %)(((
513 513  Temperature(DS18B20)
514 514  (PC13)
... ... @@ -524,10 +524,10 @@
524 524  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
525 525  
526 526  
527 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
528 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
529 529  **Size(bytes)**
530 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
531 531  |Value|BAT|(% style="width:207px" %)(((
532 532  Temperature(DS18B20)
533 533  (PC13)
... ... @@ -547,10 +547,10 @@
547 547  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
548 548  
549 549  
550 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
551 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
549 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
552 552  **Size(bytes)**
553 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
554 554  |Value|BAT|(((
555 555  Temperature
556 556  (DS18B20)(PC13)
... ... @@ -587,6 +587,108 @@
587 587  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
588 588  
589 589  
589 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590 +
591 +
592 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 +
594 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595 +
596 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597 +
598 +
599 +===== 2.3.2.10.a  Uplink, PWM input capture =====
600 +
601 +
602 +[[image:image-20230817172209-2.png||height="439" width="683"]]
603 +
604 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 +|Value|Bat|(% style="width:191px" %)(((
607 +Temperature(DS18B20)(PC13)
608 +)))|(% style="width:78px" %)(((
609 +ADC(PA4)
610 +)))|(% style="width:135px" %)(((
611 +PWM_Setting
612 +&Digital Interrupt(PA8)
613 +)))|(% style="width:70px" %)(((
614 +Pulse period
615 +)))|(% style="width:89px" %)(((
616 +Duration of high level
617 +)))
618 +
619 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
620 +
621 +
622 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623 +
624 +**Frequency:**
625 +
626 +(% class="MsoNormal" %)
627 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628 +
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631 +
632 +
633 +(% class="MsoNormal" %)
634 +**Duty cycle:**
635 +
636 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 +
638 +[[image:image-20230818092200-1.png||height="344" width="627"]]
639 +
640 +
641 +===== 2.3.2.10.b  Uplink, PWM output =====
642 +
643 +
644 +[[image:image-20230817172209-2.png||height="439" width="683"]]
645 +
646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 +
648 +a is the time delay of the output, the unit is ms.
649 +
650 +b is the output frequency, the unit is HZ.
651 +
652 +c is the duty cycle of the output, the unit is %.
653 +
654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 +
656 +aa is the time delay of the output, the unit is ms.
657 +
658 +bb is the output frequency, the unit is HZ.
659 +
660 +cc is the duty cycle of the output, the unit is %.
661 +
662 +
663 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 +
665 +The oscilloscope displays as follows:
666 +
667 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 +
669 +
670 +===== 2.3.2.10.c  Downlink, PWM output =====
671 +
672 +
673 +[[image:image-20230817173800-3.png||height="412" width="685"]]
674 +
675 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 +
677 + xx xx xx is the output frequency, the unit is HZ.
678 +
679 + yy is the duty cycle of the output, the unit is %.
680 +
681 + zz zz is the time delay of the output, the unit is ms.
682 +
683 +
684 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 +
686 +The oscilloscope displays as follows:
687 +
688 +[[image:image-20230817173858-5.png||height="634" width="843"]]
689 +
690 +
590 590  === 2.3.3  ​Decode payload ===
591 591  
592 592  
... ... @@ -596,13 +596,13 @@
596 596  
597 597  The payload decoder function for TTN V3 are here:
598 598  
599 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
700 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
600 600  
601 601  
602 602  ==== 2.3.3.1 Battery Info ====
603 603  
604 604  
605 -Check the battery voltage for SN50v3-LB.
706 +Check the battery voltage for SN50v3-LB/LS.
606 606  
607 607  Ex1: 0x0B45 = 2885mV
608 608  
... ... @@ -660,10 +660,16 @@
660 660  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
661 661  
662 662  
764 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
765 +
766 +[[image:image-20230811113449-1.png||height="370" width="608"]]
767 +
768 +
769 +
663 663  ==== 2.3.3.5 Digital Interrupt ====
664 664  
665 665  
666 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
773 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
667 667  
668 668  (% style="color:blue" %)** Interrupt connection method:**
669 669  
... ... @@ -676,18 +676,18 @@
676 676  
677 677  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
678 678  
679 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
786 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
680 680  
681 681  
682 682  (% style="color:blue" %)**Below is the installation example:**
683 683  
684 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
791 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
685 685  
686 686  * (((
687 -One pin to SN50v3-LB's PA8 pin
794 +One pin to SN50v3-LB/LS's PA8 pin
688 688  )))
689 689  * (((
690 -The other pin to SN50v3-LB's VDD pin
797 +The other pin to SN50v3-LB/LS's VDD pin
691 691  )))
692 692  
693 693  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -723,7 +723,7 @@
723 723  
724 724  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
725 725  
726 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
833 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
727 727  
728 728  
729 729  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -757,7 +757,7 @@
757 757  
758 758  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759 759  
760 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
867 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 761  
762 762  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
763 763  
... ... @@ -766,7 +766,7 @@
766 766  [[image:image-20230512173903-6.png||height="596" width="715"]]
767 767  
768 768  
769 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
876 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770 770  
771 771  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772 772  
... ... @@ -778,13 +778,13 @@
778 778  ==== 2.3.3.9  Battery Output - BAT pin ====
779 779  
780 780  
781 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
888 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
782 782  
783 783  
784 784  ==== 2.3.3.10  +5V Output ====
785 785  
786 786  
787 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
894 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
788 788  
789 789  The 5V output time can be controlled by AT Command.
790 790  
... ... @@ -806,9 +806,37 @@
806 806  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
807 807  
808 808  
809 -==== 2.3.3.12  Working MOD ====
916 +==== 2.3.3.12  PWM MOD ====
810 810  
811 811  
919 +* (((
920 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
921 +)))
922 +* (((
923 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
924 +)))
925 +
926 + [[image:image-20230817183249-3.png||height="320" width="417"]]
927 +
928 +* (((
929 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
930 +)))
931 +* (((
932 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
933 +)))
934 +* (((
935 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
936 +
937 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
938 +
939 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
940 +
941 +b) If the output duration is more than 30 seconds, better to use external power source. 
942 +)))
943 +
944 +==== 2.3.3.13  Working MOD ====
945 +
946 +
812 812  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813 813  
814 814  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -824,6 +824,7 @@
824 824  * 6: MOD7
825 825  * 7: MOD8
826 826  * 8: MOD9
962 +* 9: MOD10
827 827  
828 828  == 2.4 Payload Decoder file ==
829 829  
... ... @@ -838,17 +838,17 @@
838 838  == 2.5 Frequency Plans ==
839 839  
840 840  
841 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
977 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
842 842  
843 843  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
844 844  
845 845  
846 -= 3. Configure SN50v3-LB =
982 += 3. Configure SN50v3-LB/LS =
847 847  
848 848  == 3.1 Configure Methods ==
849 849  
850 850  
851 -SN50v3-LB supports below configure method:
987 +SN50v3-LB/LS supports below configure method:
852 852  
853 853  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
854 854  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -867,10 +867,10 @@
867 867  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
868 868  
869 869  
870 -== 3.3 Commands special design for SN50v3-LB ==
1006 +== 3.3 Commands special design for SN50v3-LB/LS ==
871 871  
872 872  
873 -These commands only valid for SN50v3-LB, as below:
1009 +These commands only valid for SN50v3-LB/LS, as below:
874 874  
875 875  
876 876  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -881,7 +881,7 @@
881 881  (% style="color:blue" %)**AT Command: AT+TDC**
882 882  
883 883  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
884 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1020 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
885 885  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
886 886  30000
887 887  OK
... ... @@ -916,10 +916,10 @@
916 916  
917 917  Feature, Set Interrupt mode for GPIO_EXIT.
918 918  
919 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1055 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
920 920  
921 921  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
922 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1058 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
923 923  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
924 924  0
925 925  OK
... ... @@ -963,7 +963,7 @@
963 963  (% style="color:blue" %)**AT Command: AT+5VT**
964 964  
965 965  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1102 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
967 967  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 968  500(default)
969 969  OK
... ... @@ -989,9 +989,9 @@
989 989  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
990 990  
991 991  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1128 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
993 993  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
994 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1130 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
995 995  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
996 996  
997 997  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1015,8 +1015,8 @@
1015 1015  
1016 1016  (% style="color:blue" %)**AT Command: AT+SETCNT**
1017 1017  
1018 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1154 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1155 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1020 1020  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1021 1021  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1022 1022  
... ... @@ -1036,8 +1036,8 @@
1036 1036  
1037 1037  (% style="color:blue" %)**AT Command: AT+MOD**
1038 1038  
1039 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1040 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1175 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1041 1041  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1042 1042  OK
1043 1043  )))
... ... @@ -1053,11 +1053,97 @@
1053 1053  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1054 1054  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1055 1055  
1056 -= 4. Battery & Power Consumption =
1192 +=== 3.3.8 PWM setting ===
1057 1057  
1058 1058  
1059 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1195 +Feature: Set the time acquisition unit for PWM input capture.
1060 1060  
1197 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1198 +
1199 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1200 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1201 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1202 +0(default)
1203 +OK
1204 +)))
1205 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1206 +OK
1207 +
1208 +)))
1209 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1210 +
1211 +(% style="color:blue" %)**Downlink Command: 0x0C**
1212 +
1213 +Format: Command Code (0x0C) followed by 1 bytes.
1214 +
1215 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1216 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1217 +
1218 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1219 +
1220 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1221 +
1222 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1223 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1224 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1225 +0,0,0(default)
1226 +OK
1227 +)))
1228 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1229 +OK
1230 +
1231 +)))
1232 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1233 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1234 +
1235 +
1236 +)))|(% style="width:137px" %)(((
1237 +OK
1238 +)))
1239 +
1240 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1241 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1242 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1243 +AT+PWMOUT=a,b,c
1244 +
1245 +
1246 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1247 +Set PWM output time, output frequency and output duty cycle.
1248 +
1249 +(((
1250 +
1251 +)))
1252 +
1253 +(((
1254 +
1255 +)))
1256 +)))|(% style="width:242px" %)(((
1257 +a: Output time (unit: seconds)
1258 +The value ranges from 0 to 65535.
1259 +When a=65535, PWM will always output.
1260 +)))
1261 +|(% style="width:242px" %)(((
1262 +b: Output frequency (unit: HZ)
1263 +)))
1264 +|(% style="width:242px" %)(((
1265 +c: Output duty cycle (unit: %)
1266 +The value ranges from 0 to 100.
1267 +)))
1268 +
1269 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1270 +
1271 +Format: Command Code (0x0B01) followed by 6 bytes.
1272 +
1273 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1274 +
1275 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1276 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1277 +
1278 += 4. Battery & Power Cons =
1279 +
1280 +
1281 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1282 +
1061 1061  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1062 1062  
1063 1063  
... ... @@ -1065,7 +1065,7 @@
1065 1065  
1066 1066  
1067 1067  (% class="wikigeneratedid" %)
1068 -**User can change firmware SN50v3-LB to:**
1290 +**User can change firmware SN50v3-LB/LS to:**
1069 1069  
1070 1070  * Change Frequency band/ region.
1071 1071  * Update with new features.
... ... @@ -1075,21 +1075,37 @@
1075 1075  
1076 1076  **Methods to Update Firmware:**
1077 1077  
1078 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1079 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1300 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1301 +* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1080 1080  
1081 1081  = 6. FAQ =
1082 1082  
1083 -== 6.1 Where can i find source code of SN50v3-LB? ==
1305 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1084 1084  
1085 1085  
1086 1086  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1087 1087  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1088 1088  
1311 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1312 +
1313 +
1314 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1315 +
1316 +
1317 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1318 +
1319 +
1320 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1321 +
1322 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1323 +
1324 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1325 +
1326 +
1089 1089  = 7. Order Info =
1090 1090  
1091 1091  
1092 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1330 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1093 1093  
1094 1094  (% style="color:red" %)**XX**(%%): The default frequency band
1095 1095  
... ... @@ -1114,7 +1114,7 @@
1114 1114  
1115 1115  (% style="color:#037691" %)**Package Includes**:
1116 1116  
1117 -* SN50v3-LB LoRaWAN Generic Node
1355 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1118 1118  
1119 1119  (% style="color:#037691" %)**Dimension and weight**:
1120 1120  
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0