<
From version < 53.2 >
edited by Xiaoling
on 2023/06/15 08:45
To version < 43.40 >
edited by Xiaoling
on 2023/05/16 15:00
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,7 +30,6 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -142,7 +142,7 @@
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 144  
145 -== 1.9 Hole Option ==
138 +== Hole Option ==
146 146  
147 147  
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -222,44 +222,44 @@
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 223  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -0x01: EU868
229 +*0x01: EU868
237 237  
238 -0x02: US915
231 +*0x02: US915
239 239  
240 -0x03: IN865
233 +*0x03: IN865
241 241  
242 -0x04: AU915
235 +*0x04: AU915
243 243  
244 -0x05: KZ865
237 +*0x05: KZ865
245 245  
246 -0x06: RU864
239 +*0x06: RU864
247 247  
248 -0x07: AS923
241 +*0x07: AS923
249 249  
250 -0x08: AS923-1
243 +*0x08: AS923-1
251 251  
252 -0x09: AS923-2
245 +*0x09: AS923-2
253 253  
254 -0x0a: AS923-3
247 +*0x0a: AS923-3
255 255  
256 -0x0b: CN470
249 +*0x0b: CN470
257 257  
258 -0x0c: EU433
251 +*0x0c: EU433
259 259  
260 -0x0d: KR920
253 +*0x0d: KR920
261 261  
262 -0x0e: MA869
255 +*0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,22 +283,19 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 +1. All modes share the same Payload Explanation from HERE.
290 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 -
299 -3. By default, the device will send an uplink message every 20 minutes.
300 -
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 304  
... ... @@ -305,8 +305,8 @@
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 307  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 -|Value|Bat|(% style="width:191px" %)(((
298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 +|**Value**|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
312 312  ADC(PA4)
... ... @@ -323,12 +323,11 @@
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|Value|BAT|(% style="width:196px" %)(((
319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 +|**Value**|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
334 334  ADC(PA4)
... ... @@ -335,30 +335,27 @@
335 335  )))|(% style="width:189px" %)(((
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by: 1) LIDAR-Lite V3HP
327 +Distance measure by:1) LIDAR-Lite V3HP
339 339  Or 2) Ultrasonic Sensor
340 340  )))|(% style="width:117px" %)Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
344 -
345 345  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 346  
347 347  [[image:image-20230512173758-5.png||height="563" width="712"]]
348 348  
349 -
350 350  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 351  
352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 353  
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 359  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|Value|BAT|(% style="width:183px" %)(((
346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 +|**Value**|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
364 364  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -372,31 +372,28 @@
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374 374  
375 -
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379 379  
380 380  [[image:image-20230512180609-7.png||height="555" width="802"]]
381 381  
382 -
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386 386  
387 -[[image:image-20230610170047-1.png||height="452" width="799"]]
371 +[[image:image-20230513105207-4.png||height="469" width="802"]]
388 388  
389 389  
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391 391  
392 -
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 395  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 396  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 -|Value|(% style="width:68px" %)(((
381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 +|**Value**|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
402 402  ADC2(PA5)
... ... @@ -419,8 +419,8 @@
419 419  This mode has total 11 bytes. As shown below:
420 420  
421 421  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
423 -|Value|BAT|(% style="width:186px" %)(((
405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 +|**Value**|BAT|(% style="width:186px" %)(((
424 424  Temperature1(DS18B20)(PC13)
425 425  )))|(% style="width:82px" %)(((
426 426  ADC(PA4)
... ... @@ -431,29 +431,24 @@
431 431  
432 432  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 433  
434 -
435 435  [[image:image-20230513134006-1.png||height="559" width="736"]]
436 436  
437 437  
438 438  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 439  
440 -
441 441  [[image:image-20230512164658-2.png||height="532" width="729"]]
442 442  
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
444 444  
445 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 447  1. (((
448 448  Weight has 4 bytes, the unit is g.
449 -
450 -
451 -
452 452  )))
453 453  
454 454  For example:
455 455  
456 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
434 +**AT+GETSENSORVALUE =0**
457 457  
458 458  Response:  Weight is 401 g
459 459  
... ... @@ -463,21 +463,21 @@
463 463  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 464  **Size(bytes)**
465 465  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
466 -|Value|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)(PC13)
444 +|**Value**|BAT|(% style="width:193px" %)(((
445 +Temperature(DS18B20)
446 +(PC13)
468 468  )))|(% style="width:85px" %)(((
469 469  ADC(PA4)
470 470  )))|(% style="width:186px" %)(((
471 -Digital in(PB15) & Digital Interrupt(PA8)
450 +Digital in(PB15) &
451 +Digital Interrupt(PA8)
472 472  )))|(% style="width:100px" %)Weight
473 473  
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
476 476  
477 -
478 478  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
479 479  
480 -
481 481  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
482 482  
483 483  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -484,12 +484,11 @@
484 484  
485 485  [[image:image-20230512181814-9.png||height="543" width="697"]]
486 486  
465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
487 487  
488 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
489 -
490 490  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
491 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 -|Value|BAT|(% style="width:256px" %)(((
468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 +|**Value**|BAT|(% style="width:256px" %)(((
493 493  Temperature(DS18B20)(PC13)
494 494  )))|(% style="width:108px" %)(((
495 495  ADC(PA4)
... ... @@ -504,12 +504,11 @@
504 504  
505 505  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506 506  
507 -
508 508  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
509 509  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 510  **Size(bytes)**
511 511  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
512 -|Value|BAT|(% style="width:188px" %)(((
488 +|**Value**|BAT|(% style="width:188px" %)(((
513 513  Temperature(DS18B20)
514 514  (PC13)
515 515  )))|(% style="width:83px" %)(((
... ... @@ -520,15 +520,13 @@
520 520  
521 521  [[image:image-20230513111203-7.png||height="324" width="975"]]
522 522  
523 -
524 524  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
525 525  
526 -
527 527  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
528 528  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 529  **Size(bytes)**
530 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 -|Value|BAT|(% style="width:207px" %)(((
504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 +|**Value**|BAT|(% style="width:207px" %)(((
532 532  Temperature(DS18B20)
533 533  (PC13)
534 534  )))|(% style="width:94px" %)(((
... ... @@ -546,23 +546,22 @@
546 546  
547 547  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
548 548  
549 -
550 550  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
551 551  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 552  **Size(bytes)**
553 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 -|Value|BAT|(((
555 -Temperature
556 -(DS18B20)(PC13)
526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 +|**Value**|BAT|(((
528 +Temperature1(DS18B20)
529 +(PC13)
557 557  )))|(((
558 -Temperature2
559 -(DS18B20)(PB9)
531 +Temperature2(DS18B20)
532 +(PB9)
560 560  )))|(((
561 561  Digital Interrupt
562 562  (PB15)
563 563  )))|(% style="width:193px" %)(((
564 -Temperature3
565 -(DS18B20)(PB8)
537 +Temperature3(DS18B20)
538 +(PB8)
566 566  )))|(% style="width:78px" %)(((
567 567  Count1(PA8)
568 568  )))|(% style="width:78px" %)(((
... ... @@ -573,23 +573,22 @@
573 573  
574 574  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
549 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
551 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
579 579  
580 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
553 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
581 581  
555 +**AT+SETCNT=aa,bb** 
582 582  
583 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
584 -
585 585  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
586 586  
587 587  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
588 588  
589 589  
562 +
590 590  === 2.3.3  ​Decode payload ===
591 591  
592 -
593 593  While using TTN V3 network, you can add the payload format to decode the payload.
594 594  
595 595  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -596,14 +596,13 @@
596 596  
597 597  The payload decoder function for TTN V3 are here:
598 598  
599 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
571 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
600 600  
601 601  
602 602  ==== 2.3.3.1 Battery Info ====
603 603  
576 +Check the battery voltage for SN50v3.
604 604  
605 -Check the battery voltage for SN50v3-LB.
606 -
607 607  Ex1: 0x0B45 = 2885mV
608 608  
609 609  Ex2: 0x0B49 = 2889mV
... ... @@ -611,18 +611,16 @@
611 611  
612 612  ==== 2.3.3.2  Temperature (DS18B20) ====
613 613  
614 -
615 615  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
616 616  
617 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
587 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
618 618  
619 -(% style="color:blue" %)**Connection:**
589 +**Connection:**
620 620  
621 621  [[image:image-20230512180718-8.png||height="538" width="647"]]
622 622  
593 +**Example**:
623 623  
624 -(% style="color:blue" %)**Example**:
625 -
626 626  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
627 627  
628 628  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -632,7 +632,6 @@
632 632  
633 633  ==== 2.3.3.3 Digital Input ====
634 634  
635 -
636 636  The digital input for pin PB15,
637 637  
638 638  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -642,34 +642,28 @@
642 642  (((
643 643  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
644 644  
645 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
646 -
647 -
613 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
648 648  )))
649 649  
650 650  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
651 651  
618 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
652 652  
653 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
620 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654 654  
655 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
656 -
657 657  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
658 658  
624 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
659 659  
660 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
661 661  
662 -
663 663  ==== 2.3.3.5 Digital Interrupt ====
664 664  
629 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
665 665  
666 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
631 +(% style="color:blue" %)**~ Interrupt connection method:**
667 667  
668 -(% style="color:blue" %)** Interrupt connection method:**
669 -
670 670  [[image:image-20230513105351-5.png||height="147" width="485"]]
671 671  
672 -
673 673  (% style="color:blue" %)**Example to use with door sensor :**
674 674  
675 675  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -676,23 +676,22 @@
676 676  
677 677  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
678 678  
679 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
641 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
680 680  
643 +(% style="color:blue" %)**~ Below is the installation example:**
681 681  
682 -(% style="color:blue" %)**Below is the installation example:**
645 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
683 683  
684 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685 -
686 686  * (((
687 -One pin to SN50v3-LB's PA8 pin
648 +One pin to SN50_v3's PA8 pin
688 688  )))
689 689  * (((
690 -The other pin to SN50v3-LB's VDD pin
651 +The other pin to SN50_v3's VDD pin
691 691  )))
692 692  
693 693  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
694 694  
695 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
656 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696 696  
697 697  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
698 698  
... ... @@ -704,32 +704,29 @@
704 704  
705 705  The command is:
706 706  
707 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
668 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 708  
709 709  Below shows some screen captures in TTN V3:
710 710  
711 711  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
712 712  
674 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
713 713  
714 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 -
716 716  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
717 717  
718 718  
719 719  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
720 720  
721 -
722 722  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
723 723  
724 724  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
725 725  
726 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
685 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
727 727  
728 -
729 729  Below is the connection to SHT20/ SHT31. The connection is as below:
730 730  
731 -[[image:image-20230610170152-2.png||height="501" width="846"]]
732 732  
690 +[[image:image-20230513103633-3.png||height="448" width="716"]]
733 733  
734 734  The device will be able to get the I2C sensor data now and upload to IoT Server.
735 735  
... ... @@ -748,26 +748,23 @@
748 748  
749 749  ==== 2.3.3.7  ​Distance Reading ====
750 750  
709 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
751 751  
752 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
753 753  
754 -
755 755  ==== 2.3.3.8 Ultrasonic Sensor ====
756 756  
757 -
758 758  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759 759  
760 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
716 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 761  
762 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
718 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
763 763  
764 764  The picture below shows the connection:
765 765  
766 766  [[image:image-20230512173903-6.png||height="596" width="715"]]
767 767  
724 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
768 768  
769 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770 -
771 771  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772 772  
773 773  **Example:**
... ... @@ -775,17 +775,16 @@
775 775  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
776 776  
777 777  
733 +
778 778  ==== 2.3.3.9  Battery Output - BAT pin ====
779 779  
736 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
780 780  
781 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
782 782  
783 -
784 784  ==== 2.3.3.10  +5V Output ====
785 785  
741 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
786 786  
787 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
788 -
789 789  The 5V output time can be controlled by AT Command.
790 790  
791 791  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -792,23 +792,21 @@
792 792  
793 793  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
794 794  
795 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
749 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796 796  
797 797  
752 +
798 798  ==== 2.3.3.11  BH1750 Illumination Sensor ====
799 799  
800 -
801 801  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
802 802  
803 803  [[image:image-20230512172447-4.png||height="416" width="712"]]
804 804  
805 -
806 806  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
807 807  
808 808  
809 809  ==== 2.3.3.12  Working MOD ====
810 810  
811 -
812 812  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813 813  
814 814  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -825,6 +825,8 @@
825 825  * 7: MOD8
826 826  * 8: MOD9
827 827  
780 +
781 +
828 828  == 2.4 Payload Decoder file ==
829 829  
830 830  
... ... @@ -835,6 +835,7 @@
835 835  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
836 836  
837 837  
792 +
838 838  == 2.5 Frequency Plans ==
839 839  
840 840  
... ... @@ -870,18 +870,17 @@
870 870  == 3.3 Commands special design for SN50v3-LB ==
871 871  
872 872  
873 -These commands only valid for SN50v3-LB, as below:
828 +These commands only valid for S31x-LB, as below:
874 874  
875 875  
876 876  === 3.3.1 Set Transmit Interval Time ===
877 877  
878 -
879 879  Feature: Change LoRaWAN End Node Transmit Interval.
880 880  
881 881  (% style="color:blue" %)**AT Command: AT+TDC**
882 882  
883 883  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
884 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
838 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
885 885  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
886 886  30000
887 887  OK
... ... @@ -901,25 +901,25 @@
901 901  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 902  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903 903  
904 -=== 3.3.2 Get Device Status ===
905 905  
906 906  
860 +=== 3.3.2 Get Device Status ===
861 +
907 907  Send a LoRaWAN downlink to ask the device to send its status.
908 908  
909 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
864 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
910 910  
911 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
866 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
912 912  
913 913  
914 914  === 3.3.3 Set Interrupt Mode ===
915 915  
916 -
917 917  Feature, Set Interrupt mode for GPIO_EXIT.
918 918  
919 919  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
920 920  
921 921  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
922 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
876 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
923 923  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
924 924  0
925 925  OK
... ... @@ -934,6 +934,7 @@
934 934  )))|(% style="width:157px" %)OK
935 935  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
936 936  Set Transmit Interval
891 +
937 937  trigger by rising edge.
938 938  )))|(% style="width:157px" %)OK
939 939  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -949,9 +949,10 @@
949 949  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
950 950  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
951 951  
952 -=== 3.3.4 Set Power Output Duration ===
953 953  
954 954  
909 +=== 3.3.4 Set Power Output Duration ===
910 +
955 955  Control the output duration 5V . Before each sampling, device will
956 956  
957 957  ~1. first enable the power output to external sensor,
... ... @@ -963,7 +963,7 @@
963 963  (% style="color:blue" %)**AT Command: AT+5VT**
964 964  
965 965  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
922 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
967 967  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 968  500(default)
969 969  OK
... ... @@ -981,15 +981,16 @@
981 981  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
982 982  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
983 983  
984 -=== 3.3.5 Set Weighing parameters ===
985 985  
986 986  
942 +=== 3.3.5 Set Weighing parameters ===
943 +
987 987  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
988 988  
989 989  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
990 990  
991 991  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
949 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
993 993  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
994 994  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
995 995  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1006,9 +1006,10 @@
1006 1006  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1007 1007  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1008 1008  
1009 -=== 3.3.6 Set Digital pulse count value ===
1010 1010  
1011 1011  
968 +=== 3.3.6 Set Digital pulse count value ===
969 +
1012 1012  Feature: Set the pulse count value.
1013 1013  
1014 1014  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1016,7 +1016,7 @@
1016 1016  (% style="color:blue" %)**AT Command: AT+SETCNT**
1017 1017  
1018 1018  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
977 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1020 1020  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1021 1021  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1022 1022  
... ... @@ -1029,15 +1029,16 @@
1029 1029  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1030 1030  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1031 1031  
1032 -=== 3.3.7 Set Workmode ===
1033 1033  
1034 1034  
992 +=== 3.3.7 Set Workmode ===
993 +
1035 1035  Feature: Switch working mode.
1036 1036  
1037 1037  (% style="color:blue" %)**AT Command: AT+MOD**
1038 1038  
1039 1039  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1040 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
999 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1041 1041  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1042 1042  OK
1043 1043  )))
... ... @@ -1053,6 +1053,8 @@
1053 1053  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1054 1054  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1055 1055  
1015 +
1016 +
1056 1056  = 4. Battery & Power Consumption =
1057 1057  
1058 1058  
... ... @@ -1065,16 +1065,17 @@
1065 1065  
1066 1066  
1067 1067  (% class="wikigeneratedid" %)
1068 -**User can change firmware SN50v3-LB to:**
1029 +User can change firmware SN50v3-LB to:
1069 1069  
1070 1070  * Change Frequency band/ region.
1071 1071  * Update with new features.
1072 1072  * Fix bugs.
1073 1073  
1074 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1035 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1075 1075  
1076 -**Methods to Update Firmware:**
1077 1077  
1038 +Methods to Update Firmware:
1039 +
1078 1078  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1079 1079  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1080 1080  
... ... @@ -1082,7 +1082,6 @@
1082 1082  
1083 1083  == 6.1 Where can i find source code of SN50v3-LB? ==
1084 1084  
1085 -
1086 1086  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1087 1087  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1088 1088  
... ... @@ -1111,7 +1111,6 @@
1111 1111  
1112 1112  = 8. ​Packing Info =
1113 1113  
1114 -
1115 1115  (% style="color:#037691" %)**Package Includes**:
1116 1116  
1117 1117  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0