<
From version < 53.1 >
edited by Saxer Lin
on 2023/06/14 11:28
To version < 78.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
>
Change comment: Uploaded new attachment "image-20231213102404-1.jpeg", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.ting
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -41,7 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -230,33 +230,33 @@
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -*0x01: EU868
229 +0x01: EU868
234 234  
235 -*0x02: US915
231 +0x02: US915
236 236  
237 -*0x03: IN865
233 +0x03: IN865
238 238  
239 -*0x04: AU915
235 +0x04: AU915
240 240  
241 -*0x05: KZ865
237 +0x05: KZ865
242 242  
243 -*0x06: RU864
239 +0x06: RU864
244 244  
245 -*0x07: AS923
241 +0x07: AS923
246 246  
247 -*0x08: AS923-1
243 +0x08: AS923-1
248 248  
249 -*0x09: AS923-2
245 +0x09: AS923-2
250 250  
251 -*0x0a: AS923-3
247 +0x0a: AS923-3
252 252  
253 -*0x0b: CN470
249 +0x0b: CN470
254 254  
255 -*0x0c: EU433
251 +0x0c: EU433
256 256  
257 -*0x0d: KR920
253 +0x0d: KR920
258 258  
259 -*0x0e: MA869
255 +0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -332,9 +332,8 @@
332 332  )))|(% style="width:189px" %)(((
333 333  Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 -Distance measure by:1) LIDAR-Lite V3HP
336 -Or
337 -2) Ultrasonic Sensor
331 +Distance measure by: 1) LIDAR-Lite V3HP
332 +Or 2) Ultrasonic Sensor
338 338  )))|(% style="width:117px" %)Reserved
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -364,8 +364,7 @@
364 364  ADC(PA4)
365 365  )))|(% style="width:323px" %)(((
366 366  Distance measure by:1)TF-Mini plus LiDAR
367 -Or 
368 -2) TF-Luna LiDAR
362 +Or 2) TF-Luna LiDAR
369 369  )))|(% style="width:188px" %)Distance signal  strength
370 370  
371 371  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -472,7 +472,6 @@
472 472  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
473 473  
474 474  
475 -
476 476  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 477  
478 478  
... ... @@ -585,6 +585,87 @@
585 585  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
581 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 +
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 +
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 +
589 +
590 +===== 2.3.2.10.a  Uplink, PWM input capture =====
591 +
592 +
593 +[[image:image-20230817172209-2.png||height="439" width="683"]]
594 +
595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 +|Value|Bat|(% style="width:191px" %)(((
598 +Temperature(DS18B20)(PC13)
599 +)))|(% style="width:78px" %)(((
600 +ADC(PA4)
601 +)))|(% style="width:135px" %)(((
602 +PWM_Setting
603 +
604 +&Digital Interrupt(PA8)
605 +)))|(% style="width:70px" %)(((
606 +Pulse period
607 +)))|(% style="width:89px" %)(((
608 +Duration of high level
609 +)))
610 +
611 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 +
613 +
614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 +
616 +**Frequency:**
617 +
618 +(% class="MsoNormal" %)
619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 +
621 +(% class="MsoNormal" %)
622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 +
624 +
625 +(% class="MsoNormal" %)
626 +**Duty cycle:**
627 +
628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 +
630 +[[image:image-20230818092200-1.png||height="344" width="627"]]
631 +
632 +===== 2.3.2.10.b  Uplink, PWM output =====
633 +
634 +[[image:image-20230817172209-2.png||height="439" width="683"]]
635 +
636 +
637 +
638 +
639 +
640 +
641 +===== 2.3.2.10.c  Downlink, PWM output =====
642 +
643 +
644 +[[image:image-20230817173800-3.png||height="412" width="685"]]
645 +
646 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
647 +
648 + xx xx xx is the output frequency, the unit is HZ.
649 +
650 + yy is the duty cycle of the output, the unit is %.
651 +
652 + zz zz is the time delay of the output, the unit is ms.
653 +
654 +
655 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
656 +
657 +The oscilloscope displays as follows:
658 +
659 +[[image:image-20230817173858-5.png||height="694" width="921"]]
660 +
661 +
588 588  === 2.3.3  ​Decode payload ===
589 589  
590 590  
... ... @@ -658,6 +658,10 @@
658 658  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 659  
660 660  
735 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
736 +
737 +[[image:image-20230811113449-1.png||height="370" width="608"]]
738 +
661 661  ==== 2.3.3.5 Digital Interrupt ====
662 662  
663 663  
... ... @@ -804,9 +804,40 @@
804 804  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
805 805  
806 806  
807 -==== 2.3.3.12  Working MOD ====
885 +==== 2.3.3.12  PWM MOD ====
808 808  
809 809  
888 +* (((
889 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
890 +)))
891 +* (((
892 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
893 +)))
894 +
895 + [[image:image-20230817183249-3.png||height="320" width="417"]]
896 +
897 +* (((
898 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
899 +)))
900 +* (((
901 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
902 +)))
903 +* (((
904 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
905 +
906 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
907 +
908 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
909 +
910 +b) If the output duration is more than 30 seconds, better to use external power source. 
911 +
912 +
913 +
914 +)))
915 +
916 +==== 2.3.3.13  Working MOD ====
917 +
918 +
810 810  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
811 811  
812 812  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -822,8 +822,8 @@
822 822  * 6: MOD7
823 823  * 7: MOD8
824 824  * 8: MOD9
934 +* 9: MOD10
825 825  
826 -
827 827  == 2.4 Payload Decoder file ==
828 828  
829 829  
... ... @@ -853,7 +853,6 @@
853 853  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
854 854  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
855 855  
856 -
857 857  == 3.2 General Commands ==
858 858  
859 859  
... ... @@ -901,7 +901,6 @@
901 901  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 902  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903 903  
904 -
905 905  === 3.3.2 Get Device Status ===
906 906  
907 907  
... ... @@ -950,7 +950,6 @@
950 950  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
951 951  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
952 952  
953 -
954 954  === 3.3.4 Set Power Output Duration ===
955 955  
956 956  
... ... @@ -983,7 +983,6 @@
983 983  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
984 984  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
985 985  
986 -
987 987  === 3.3.5 Set Weighing parameters ===
988 988  
989 989  
... ... @@ -1009,7 +1009,6 @@
1009 1009  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1010 1010  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1011 1011  
1012 -
1013 1013  === 3.3.6 Set Digital pulse count value ===
1014 1014  
1015 1015  
... ... @@ -1033,7 +1033,6 @@
1033 1033  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1034 1034  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1035 1035  
1036 -
1037 1037  === 3.3.7 Set Workmode ===
1038 1038  
1039 1039  
... ... @@ -1058,10 +1058,101 @@
1058 1058  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1059 1059  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1060 1060  
1164 +(% id="H3.3.8PWMsetting" %)
1165 +=== 3.3.8 PWM setting ===
1061 1061  
1062 -= 4. Battery & Power Consumption =
1063 1063  
1168 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1064 1064  
1170 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1171 +
1172 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1173 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1174 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1175 +0(default)
1176 +
1177 +OK
1178 +)))
1179 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1180 +OK
1181 +
1182 +)))
1183 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1184 +
1185 +(% style="color:blue" %)**Downlink Command: 0x0C**
1186 +
1187 +Format: Command Code (0x0C) followed by 1 bytes.
1188 +
1189 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1190 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1191 +
1192 +
1193 +
1194 +(% class="mark" %)Feature: Set the time acquisition unit for PWM output.
1195 +
1196 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1197 +
1198 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1199 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1200 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1201 +0,0,0(default)
1202 +
1203 +OK
1204 +)))
1205 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1206 +OK
1207 +
1208 +)))
1209 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1210 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1211 +
1212 +
1213 +)))|(% style="width:137px" %)(((
1214 +OK
1215 +)))
1216 +
1217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1218 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1219 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1220 +AT+PWMOUT=a,b,c
1221 +
1222 +
1223 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1224 +Set PWM output time, output frequency and output duty cycle.(((
1225 +
1226 +)))
1227 +
1228 +(((
1229 +
1230 +)))
1231 +)))|(% style="width:242px" %)(((
1232 +a: Output time (unit: seconds)
1233 +
1234 +The value ranges from 0 to 65535.
1235 +
1236 +When a=65535, PWM will always output.
1237 +)))
1238 +|(% style="width:242px" %)(((
1239 +b: Output frequency (unit: HZ)
1240 +)))
1241 +|(% style="width:242px" %)(((
1242 +c: Output duty cycle (unit: %)
1243 +
1244 +The value ranges from 0 to 100.
1245 +)))
1246 +
1247 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1248 +
1249 +Format: Command Code (0x0B01) followed by 6 bytes.
1250 +
1251 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1252 +
1253 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1254 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1255 +
1256 += 4. Battery & Power Cons =
1257 +
1258 +
1065 1065  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1066 1066  
1067 1067  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1081,10 +1081,9 @@
1081 1081  
1082 1082  **Methods to Update Firmware:**
1083 1083  
1084 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1278 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1279 +* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1086 1086  
1087 -
1088 1088  = 6. FAQ =
1089 1089  
1090 1090  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1093,7 +1093,22 @@
1093 1093  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1094 1094  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1095 1095  
1289 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1096 1096  
1291 +
1292 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1293 +
1294 +
1295 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1296 +
1297 +
1298 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1299 +
1300 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1301 +
1302 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1303 +
1304 +
1097 1097  = 7. Order Info =
1098 1098  
1099 1099  
... ... @@ -1117,7 +1117,6 @@
1117 1117  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1118 1118  * (% style="color:red" %)**NH**(%%): No Hole
1119 1119  
1120 -
1121 1121  = 8. ​Packing Info =
1122 1122  
1123 1123  
... ... @@ -1132,7 +1132,6 @@
1132 1132  * Package Size / pcs : cm
1133 1133  * Weight / pcs : g
1134 1134  
1135 -
1136 1136  = 9. Support =
1137 1137  
1138 1138  
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0