<
From version < 53.1 >
edited by Saxer Lin
on 2023/06/14 11:28
To version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -230,33 +230,33 @@
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -*0x01: EU868
232 +0x01: EU868
234 234  
235 -*0x02: US915
234 +0x02: US915
236 236  
237 -*0x03: IN865
236 +0x03: IN865
238 238  
239 -*0x04: AU915
238 +0x04: AU915
240 240  
241 -*0x05: KZ865
240 +0x05: KZ865
242 242  
243 -*0x06: RU864
242 +0x06: RU864
244 244  
245 -*0x07: AS923
244 +0x07: AS923
246 246  
247 -*0x08: AS923-1
246 +0x08: AS923-1
248 248  
249 -*0x09: AS923-2
248 +0x09: AS923-2
250 250  
251 -*0x0a: AS923-3
250 +0x0a: AS923-3
252 252  
253 -*0x0b: CN470
252 +0x0b: CN470
254 254  
255 -*0x0c: EU433
254 +0x0c: EU433
256 256  
257 -*0x0d: KR920
256 +0x0d: KR920
258 258  
259 -*0x0e: MA869
258 +0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -332,9 +332,8 @@
332 332  )))|(% style="width:189px" %)(((
333 333  Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 -Distance measure by:1) LIDAR-Lite V3HP
336 -Or
337 -2) Ultrasonic Sensor
334 +Distance measure by: 1) LIDAR-Lite V3HP
335 +Or 2) Ultrasonic Sensor
338 338  )))|(% style="width:117px" %)Reserved
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -364,8 +364,7 @@
364 364  ADC(PA4)
365 365  )))|(% style="width:323px" %)(((
366 366  Distance measure by:1)TF-Mini plus LiDAR
367 -Or 
368 -2) TF-Luna LiDAR
365 +Or 2) TF-Luna LiDAR
369 369  )))|(% style="width:188px" %)Distance signal  strength
370 370  
371 371  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -472,7 +472,6 @@
472 472  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
473 473  
474 474  
475 -
476 476  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 477  
478 478  
... ... @@ -585,6 +585,78 @@
585 585  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
584 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
585 +
586 +
587 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 +
589 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
590 +
591 +
592 +===== 2.3.2.10.a  Uplink, PWM input capture =====
593 +
594 +
595 +[[image:image-20230817172209-2.png||height="439" width="683"]]
596 +
597 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
599 +|Value|Bat|(% style="width:191px" %)(((
600 +Temperature(DS18B20)(PC13)
601 +)))|(% style="width:78px" %)(((
602 +ADC(PA4)
603 +)))|(% style="width:135px" %)(((
604 +PWM_Setting
605 +
606 +&Digital Interrupt(PA8)
607 +)))|(% style="width:70px" %)(((
608 +Pulse period
609 +)))|(% style="width:89px" %)(((
610 +Duration of high level
611 +)))
612 +
613 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
614 +
615 +
616 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
617 +
618 +**Frequency:**
619 +
620 +(% class="MsoNormal" %)
621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
622 +
623 +(% class="MsoNormal" %)
624 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
625 +
626 +
627 +(% class="MsoNormal" %)
628 +**Duty cycle:**
629 +
630 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
631 +
632 +[[image:image-20230818092200-1.png||height="344" width="627"]]
633 +
634 +
635 +===== 2.3.2.10.b  Downlink, PWM output =====
636 +
637 +
638 +[[image:image-20230817173800-3.png||height="412" width="685"]]
639 +
640 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
641 +
642 + xx xx xx is the output frequency, the unit is HZ.
643 +
644 + yy is the duty cycle of the output, the unit is %.
645 +
646 + zz zz is the time delay of the output, the unit is ms.
647 +
648 +
649 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
650 +
651 +The oscilloscope displays as follows:
652 +
653 +[[image:image-20230817173858-5.png||height="694" width="921"]]
654 +
655 +
588 588  === 2.3.3  ​Decode payload ===
589 589  
590 590  
... ... @@ -658,6 +658,10 @@
658 658  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 659  
660 660  
729 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
730 +
731 +[[image:image-20230811113449-1.png||height="370" width="608"]]
732 +
661 661  ==== 2.3.3.5 Digital Interrupt ====
662 662  
663 663  
... ... @@ -804,9 +804,31 @@
804 804  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
805 805  
806 806  
807 -==== 2.3.3.12  Working MOD ====
879 +==== 2.3.3.12  PWM MOD ====
808 808  
809 809  
882 +* (((
883 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
884 +)))
885 +* (((
886 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
887 +)))
888 +
889 + [[image:image-20230817183249-3.png||height="320" width="417"]]
890 +
891 +* (((
892 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
893 +)))
894 +* (((
895 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
896 +
897 +
898 +
899 +)))
900 +
901 +==== 2.3.3.13  Working MOD ====
902 +
903 +
810 810  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
811 811  
812 812  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -822,6 +822,7 @@
822 822  * 6: MOD7
823 823  * 7: MOD8
824 824  * 8: MOD9
919 +* 9: MOD10
825 825  
826 826  
827 827  == 2.4 Payload Decoder file ==
... ... @@ -1059,6 +1059,34 @@
1059 1059  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1060 1060  
1061 1061  
1157 +=== 3.3.8 PWM setting ===
1158 +
1159 +
1160 +Feature: Set the time acquisition unit for PWM input capture.
1161 +
1162 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1163 +
1164 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1167 +0(default)
1168 +
1169 +OK
1170 +)))
1171 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1172 +OK
1173 +
1174 +)))
1175 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1176 +
1177 +(% style="color:blue" %)**Downlink Command: 0x0C**
1178 +
1179 +Format: Command Code (0x0C) followed by 1 bytes.
1180 +
1181 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183 +
1184 +
1062 1062  = 4. Battery & Power Consumption =
1063 1063  
1064 1064  
... ... @@ -1081,8 +1081,8 @@
1081 1081  
1082 1082  **Methods to Update Firmware:**
1083 1083  
1084 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1207 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1208 +* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1086 1086  
1087 1087  
1088 1088  = 6. FAQ =
... ... @@ -1094,6 +1094,22 @@
1094 1094  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1095 1095  
1096 1096  
1220 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1221 +
1222 +
1223 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1224 +
1225 +
1226 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1227 +
1228 +
1229 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230 +
1231 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1232 +
1233 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1234 +
1235 +
1097 1097  = 7. Order Info =
1098 1098  
1099 1099  
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0