<
From version < 53.1 >
edited by Saxer Lin
on 2023/06/14 11:28
To version < 34.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111231-8.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,10 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 -
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,10 +79,8 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 -
86 86  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87 87  
88 88  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,7 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -139,9 +139,8 @@
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -== 1.9 Hole Option ==
138 +== Hole Option ==
143 143  
144 -
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 146  
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -219,12 +219,12 @@
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 220  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
... ... @@ -280,202 +280,186 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 284  
285 285  For example:
286 286  
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -2. All modes share the same Payload Explanation from HERE.
295 -
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 299  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 300  
301 -
302 302  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 303  
304 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 -|Value|Bat|(% style="width:191px" %)(((
307 -Temperature(DS18B20)(PC13)
308 -)))|(% style="width:78px" %)(((
309 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
310 310  )))|(% style="width:216px" %)(((
311 -Digital in(PB15)&Digital Interrupt(PA8)
312 -)))|(% style="width:308px" %)(((
313 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 -)))|(% style="width:154px" %)(((
315 -Humidity(SHT20 or SHT31)
316 -)))
305 +Digital in & Digital Interrupt
317 317  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
318 318  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319 319  
320 320  
321 321  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 322  
323 -
324 324  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 325  
326 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 -|Value|BAT|(% style="width:196px" %)(((
329 -Temperature(DS18B20)(PC13)
330 -)))|(% style="width:87px" %)(((
331 -ADC(PA4)
332 -)))|(% style="width:189px" %)(((
333 -Digital in(PB15) & Digital Interrupt(PA8)
334 -)))|(% style="width:208px" %)(((
335 -Distance measure by:1) LIDAR-Lite V3HP
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
336 336  Or
337 337  2) Ultrasonic Sensor
338 -)))|(% style="width:117px" %)Reserved
325 +)))|Reserved
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341 341  
329 +**Connection of LIDAR-Lite V3HP:**
342 342  
343 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344 -
345 345  [[image:image-20230512173758-5.png||height="563" width="712"]]
346 346  
333 +**Connection to Ultrasonic Sensor:**
347 347  
348 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349 -
350 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351 -
352 352  [[image:image-20230512173903-6.png||height="596" width="715"]]
353 353  
354 -
355 355  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356 356  
357 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 -|Value|BAT|(% style="width:183px" %)(((
360 -Temperature(DS18B20)(PC13)
361 -)))|(% style="width:173px" %)(((
362 -Digital in(PB15) & Digital Interrupt(PA8)
363 -)))|(% style="width:84px" %)(((
364 -ADC(PA4)
365 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
366 366  Distance measure by:1)TF-Mini plus LiDAR
367 367  Or 
368 368  2) TF-Luna LiDAR
369 -)))|(% style="width:188px" %)Distance signal  strength
346 +)))|Distance signal  strength
370 370  
371 371  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
372 372  
373 -
374 374  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
375 375  
376 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
377 377  
378 378  [[image:image-20230512180609-7.png||height="555" width="802"]]
379 379  
380 -
381 381  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
382 382  
383 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
384 384  
385 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
386 386  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
387 387  
364 +
388 388  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
389 389  
390 -
391 391  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
392 392  
393 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
394 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
395 395  **Size(bytes)**
396 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
397 -|Value|(% style="width:68px" %)(((
398 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
399 399  )))|(% style="width:75px" %)(((
400 -ADC2(PA5)
401 -)))|(((
402 -ADC3(PA8)
403 -)))|(((
404 -Digital Interrupt(PB15)
405 -)))|(% style="width:304px" %)(((
406 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 -)))|(% style="width:163px" %)(((
408 -Humidity(SHT20 or SHT31)
409 -)))|(% style="width:53px" %)Bat
377 +ADC2
410 410  
411 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
412 412  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
413 413  
386 +
414 414  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
415 415  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
416 416  
417 417  This mode has total 11 bytes. As shown below:
418 418  
419 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
420 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
421 -|Value|BAT|(% style="width:186px" %)(((
422 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
423 423  )))|(% style="width:82px" %)(((
424 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
425 425  )))|(% style="width:210px" %)(((
426 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
427 427  )))|(% style="width:191px" %)Temperature2(DS18B20)
428 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
429 429  
430 430  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
431 431  
432 432  
433 -[[image:image-20230513134006-1.png||height="559" width="736"]]
434 -
435 -
436 436  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
437 437  
438 -
439 439  [[image:image-20230512164658-2.png||height="532" width="729"]]
440 440  
441 441  Each HX711 need to be calibrated before used. User need to do below two steps:
442 442  
443 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
445 445  1. (((
446 446  Weight has 4 bytes, the unit is g.
447 -
448 -
449 -
450 450  )))
451 451  
452 452  For example:
453 453  
454 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
455 455  
456 456  Response:  Weight is 401 g
457 457  
458 458  Check the response of this command and adjust the value to match the real value for thing.
459 459  
460 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
461 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
462 462  **Size(bytes)**
463 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
464 -|Value|BAT|(% style="width:193px" %)(((
465 -Temperature(DS18B20)(PC13)
466 -)))|(% style="width:85px" %)(((
467 -ADC(PA4)
468 -)))|(% style="width:186px" %)(((
469 -Digital in(PB15) & Digital Interrupt(PA8)
470 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
471 471  
472 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
440 +(PC13)
473 473  
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
474 474  
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
475 475  
476 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
477 477  
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478 478  
455 +
456 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
457 +
479 479  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480 480  
481 481  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -482,112 +482,86 @@
482 482  
483 483  [[image:image-20230512181814-9.png||height="543" width="697"]]
484 484  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
485 485  
486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
487 487  
488 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 -|Value|BAT|(% style="width:256px" %)(((
491 -Temperature(DS18B20)(PC13)
492 -)))|(% style="width:108px" %)(((
493 -ADC(PA4)
494 -)))|(% style="width:126px" %)(((
495 -Digital in(PB15)
496 -)))|(% style="width:145px" %)(((
497 -Count(PA8)
498 -)))
499 -
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 501  
502 502  
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
505 505  
506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 -|Value|BAT|(% style="width:188px" %)(((
511 -Temperature(DS18B20)
512 -(PC13)
513 -)))|(% style="width:83px" %)(((
514 -ADC(PA5)
515 -)))|(% style="width:184px" %)(((
516 -Digital Interrupt1(PA8)
517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
518 518  
519 -[[image:image-20230513111203-7.png||height="324" width="975"]]
520 -
521 -
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 -
525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 -|Value|BAT|(% style="width:207px" %)(((
530 -Temperature(DS18B20)
531 -(PC13)
532 -)))|(% style="width:94px" %)(((
533 -ADC1(PA4)
534 -)))|(% style="width:198px" %)(((
535 -Digital Interrupt(PB15)
536 -)))|(% style="width:84px" %)(((
537 -ADC2(PA5)
538 -)))|(% style="width:82px" %)(((
539 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
540 540  )))
541 541  
542 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
543 543  
544 544  
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 -
548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 -|Value|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
512 +Temperature2(PA9)
558 558  )))|(((
559 -Digital Interrupt
560 -(PB15)
561 -)))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
564 -)))|(% style="width:78px" %)(((
565 -Count1(PA8)
566 -)))|(% style="width:78px" %)(((
567 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
568 568  )))
569 569  
570 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
571 571  
572 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 579  
534 +**AT+SETCNT=aa,bb** 
580 580  
581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 582  
583 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
588 588  === 2.3.3  ​Decode payload ===
589 589  
590 -
591 591  While using TTN V3 network, you can add the payload format to decode the payload.
592 592  
593 593  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -594,14 +594,13 @@
594 594  
595 595  The payload decoder function for TTN V3 are here:
596 596  
597 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 598  
599 599  
600 600  ==== 2.3.3.1 Battery Info ====
601 601  
555 +Check the battery voltage for SN50v3.
602 602  
603 -Check the battery voltage for SN50v3-LB.
604 -
605 605  Ex1: 0x0B45 = 2885mV
606 606  
607 607  Ex2: 0x0B49 = 2889mV
... ... @@ -609,18 +609,16 @@
609 609  
610 610  ==== 2.3.3.2  Temperature (DS18B20) ====
611 611  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
612 612  
613 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
614 614  
615 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
616 616  
617 -(% style="color:blue" %)**Connection:**
618 -
619 619  [[image:image-20230512180718-8.png||height="538" width="647"]]
620 620  
572 +**Example**:
621 621  
622 -(% style="color:blue" %)**Example**:
623 -
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625 625  
626 626  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -630,7 +630,6 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
633 -
634 634  The digital input for pin PB15,
635 635  
636 636  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -638,61 +638,51 @@
638 638  
639 639  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 640  (((
641 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642 -
643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 -
645 -
590 +Note:The maximum voltage input supports 3.6V.
646 646  )))
647 647  
593 +(% class="wikigeneratedid" %)
648 648  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649 649  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
650 650  
651 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
652 -
653 653  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
657 657  
658 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 -
660 -
661 661  ==== 2.3.3.5 Digital Interrupt ====
662 662  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
663 663  
664 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
665 665  
666 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
667 667  
668 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
669 669  
670 -
671 -(% style="color:blue" %)**Example to use with door sensor :**
672 -
673 673  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
674 674  
675 675  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
676 676  
677 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
678 678  
619 +**~ Below is the installation example:**
679 679  
680 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
681 681  
682 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
683 -
684 684  * (((
685 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
686 686  )))
687 687  * (((
688 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
689 689  )))
690 690  
691 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
692 692  
693 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
694 694  
695 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
696 696  
697 697  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
698 698  
... ... @@ -702,33 +702,29 @@
702 702  
703 703  The command is:
704 704  
705 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706 706  
707 707  Below shows some screen captures in TTN V3:
708 708  
709 709  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
710 710  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
711 711  
712 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
713 -
714 714  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
715 715  
716 716  
717 717  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
718 718  
719 -
720 720  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
721 721  
722 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
723 723  
724 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
725 725  
726 -
727 727  Below is the connection to SHT20/ SHT31. The connection is as below:
728 728  
729 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
730 730  
731 -
732 732  The device will be able to get the I2C sensor data now and upload to IoT Server.
733 733  
734 734  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -746,26 +746,20 @@
746 746  
747 747  ==== 2.3.3.7  ​Distance Reading ====
748 748  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
749 749  
750 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
751 751  
752 -
753 753  ==== 2.3.3.8 Ultrasonic Sensor ====
754 754  
755 -
756 756  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
757 757  
758 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 759  
760 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
761 -
762 762  The picture below shows the connection:
763 763  
764 -[[image:image-20230512173903-6.png||height="596" width="715"]]
765 765  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
766 766  
767 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
768 -
769 769  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
770 770  
771 771  **Example:**
... ... @@ -772,41 +772,50 @@
772 772  
773 773  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
774 774  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
775 775  
776 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
777 777  
708 +You can see the serial output in ULT mode as below:
778 778  
779 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
780 780  
712 +**In TTN V3 server:**
781 781  
782 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
783 783  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
784 784  
785 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
786 786  
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
721 +
722 +
723 +==== 2.3.3.10  +5V Output ====
724 +
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
726 +
787 787  The 5V output time can be controlled by AT Command.
788 788  
789 -(% style="color:blue" %)**AT+5VT=1000**
729 +**AT+5VT=1000**
790 790  
791 791  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
792 792  
793 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
794 794  
795 795  
736 +
796 796  ==== 2.3.3.11  BH1750 Illumination Sensor ====
797 797  
798 -
799 799  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
800 800  
801 -[[image:image-20230512172447-4.png||height="416" width="712"]]
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
802 802  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
803 803  
804 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
805 805  
806 -
807 807  ==== 2.3.3.12  Working MOD ====
808 808  
809 -
810 810  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
811 811  
812 812  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -819,11 +819,7 @@
819 819  * 3: MOD4
820 820  * 4: MOD5
821 821  * 5: MOD6
822 -* 6: MOD7
823 -* 7: MOD8
824 -* 8: MOD9
825 825  
826 -
827 827  == 2.4 Payload Decoder file ==
828 828  
829 829  
... ... @@ -831,9 +831,10 @@
831 831  
832 832  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
833 833  
834 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
835 835  
836 836  
771 +
837 837  == 2.5 Frequency Plans ==
838 838  
839 839  
... ... @@ -853,7 +853,6 @@
853 853  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
854 854  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
855 855  
856 -
857 857  == 3.2 General Commands ==
858 858  
859 859  
... ... @@ -870,7 +870,7 @@
870 870  == 3.3 Commands special design for SN50v3-LB ==
871 871  
872 872  
873 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
874 874  
875 875  
876 876  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -881,7 +881,7 @@
881 881  (% style="color:blue" %)**AT Command: AT+TDC**
882 882  
883 883  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
884 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
885 885  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
886 886  30000
887 887  OK
... ... @@ -901,32 +901,30 @@
901 901  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 902  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903 903  
904 -
905 905  === 3.3.2 Get Device Status ===
906 906  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
907 907  
908 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
909 909  
910 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
911 911  
912 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
913 913  
847 +=== 3.3.7 Set Interrupt Mode ===
914 914  
915 -=== 3.3.3 Set Interrupt Mode ===
916 916  
917 -
918 918  Feature, Set Interrupt mode for GPIO_EXIT.
919 919  
920 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
921 921  
922 922  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
923 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
924 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
925 925  0
926 926  OK
927 927  the mode is 0 =Disable Interrupt
928 928  )))
929 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
930 930  Set Transmit Interval
931 931  0. (Disable Interrupt),
932 932  ~1. (Trigger by rising and falling edge)
... ... @@ -933,11 +933,6 @@
933 933  2. (Trigger by falling edge)
934 934  3. (Trigger by rising edge)
935 935  )))|(% style="width:157px" %)OK
936 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
937 -Set Transmit Interval
938 -trigger by rising edge.
939 -)))|(% style="width:157px" %)OK
940 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
941 941  
942 942  (% style="color:blue" %)**Downlink Command: 0x06**
943 943  
... ... @@ -945,120 +945,9 @@
945 945  
946 946  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
947 947  
948 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
949 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
950 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
951 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
952 952  
953 -
954 -=== 3.3.4 Set Power Output Duration ===
955 -
956 -
957 -Control the output duration 5V . Before each sampling, device will
958 -
959 -~1. first enable the power output to external sensor,
960 -
961 -2. keep it on as per duration, read sensor value and construct uplink payload
962 -
963 -3. final, close the power output.
964 -
965 -(% style="color:blue" %)**AT Command: AT+5VT**
966 -
967 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
968 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
969 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
970 -500(default)
971 -OK
972 -)))
973 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
974 -Close after a delay of 1000 milliseconds.
975 -)))|(% style="width:157px" %)OK
976 -
977 -(% style="color:blue" %)**Downlink Command: 0x07**
978 -
979 -Format: Command Code (0x07) followed by 2 bytes.
980 -
981 -The first and second bytes are the time to turn on.
982 -
983 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
984 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
985 -
986 -
987 -=== 3.3.5 Set Weighing parameters ===
988 -
989 -
990 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
991 -
992 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
993 -
994 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
996 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
997 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
998 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
999 -
1000 -(% style="color:blue" %)**Downlink Command: 0x08**
1001 -
1002 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1003 -
1004 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1005 -
1006 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1007 -
1008 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1009 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1010 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1011 -
1012 -
1013 -=== 3.3.6 Set Digital pulse count value ===
1014 -
1015 -
1016 -Feature: Set the pulse count value.
1017 -
1018 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1019 -
1020 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1021 -
1022 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1024 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1025 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1026 -
1027 -(% style="color:blue" %)**Downlink Command: 0x09**
1028 -
1029 -Format: Command Code (0x09) followed by 5 bytes.
1030 -
1031 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1032 -
1033 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1034 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1035 -
1036 -
1037 -=== 3.3.7 Set Workmode ===
1038 -
1039 -
1040 -Feature: Switch working mode.
1041 -
1042 -(% style="color:blue" %)**AT Command: AT+MOD**
1043 -
1044 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1045 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1046 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1047 -OK
1048 -)))
1049 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1050 -OK
1051 -Attention:Take effect after ATZ
1052 -)))
1053 -
1054 -(% style="color:blue" %)**Downlink Command: 0x0A**
1055 -
1056 -Format: Command Code (0x0A) followed by 1 bytes.
1057 -
1058 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1059 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1060 -
1061 -
1062 1062  = 4. Battery & Power Consumption =
1063 1063  
1064 1064  
... ... @@ -1071,25 +1071,24 @@
1071 1071  
1072 1072  
1073 1073  (% class="wikigeneratedid" %)
1074 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1075 1075  
1076 1076  * Change Frequency band/ region.
1077 1077  * Update with new features.
1078 1078  * Fix bugs.
1079 1079  
1080 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1081 1081  
1082 -**Methods to Update Firmware:**
1083 1083  
899 +Methods to Update Firmware:
900 +
1084 1084  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 1085  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1086 1086  
1087 -
1088 1088  = 6. FAQ =
1089 1089  
1090 1090  == 6.1 Where can i find source code of SN50v3-LB? ==
1091 1091  
1092 -
1093 1093  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1094 1094  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1095 1095  
... ... @@ -1117,10 +1117,8 @@
1117 1117  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1118 1118  * (% style="color:red" %)**NH**(%%): No Hole
1119 1119  
1120 -
1121 1121  = 8. ​Packing Info =
1122 1122  
1123 -
1124 1124  (% style="color:#037691" %)**Package Includes**:
1125 1125  
1126 1126  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1132,10 +1132,8 @@
1132 1132  * Package Size / pcs : cm
1133 1133  * Weight / pcs : g
1134 1134  
1135 -
1136 1136  = 9. Support =
1137 1137  
1138 1138  
1139 1139  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1140 -
1141 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0