<
From version < 52.4 >
edited by Xiaoling
on 2023/06/12 10:39
To version < 87.34 >
edited by Xiaoling
on 2024/01/24 15:22
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,16 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
52 52  * Operating Temperature: -40 ~~ 85°C
53 53  
54 54  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,11 +93,10 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
97 97  
98 -
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -109,12 +109,10 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
117 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
118 118  
119 119  
120 120  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -134,18 +134,23 @@
134 134  
135 135  == 1.8 Mechanical ==
136 136  
135 +=== 1.8.1 for LB version ===
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139 139  
140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141 141  
140 +
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
143 +=== 1.8.2 for LS version ===
144 144  
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 +
147 +
145 145  == 1.9 Hole Option ==
146 146  
147 147  
148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151 151  
... ... @@ -152,12 +152,12 @@
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153 153  
154 154  
155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
156 156  
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,9 +168,9 @@
168 168  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
172 172  
173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
174 174  
175 175  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
... ... @@ -199,10 +199,10 @@
199 199  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200 200  
201 201  
202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
203 203  
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB.
208 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
206 206  
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
... ... @@ -214,13 +214,13 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
221 221  
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 225  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
... ... @@ -227,39 +227,39 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -*0x01: EU868
239 +0x01: EU868
237 237  
238 -*0x02: US915
241 +0x02: US915
239 239  
240 -*0x03: IN865
243 +0x03: IN865
241 241  
242 -*0x04: AU915
245 +0x04: AU915
243 243  
244 -*0x05: KZ865
247 +0x05: KZ865
245 245  
246 -*0x06: RU864
249 +0x06: RU864
247 247  
248 -*0x07: AS923
251 +0x07: AS923
249 249  
250 -*0x08: AS923-1
253 +0x08: AS923-1
251 251  
252 -*0x09: AS923-2
255 +0x09: AS923-2
253 253  
254 -*0x0a: AS923-3
257 +0x0a: AS923-3
255 255  
256 -*0x0b: CN470
259 +0x0b: CN470
257 257  
258 -*0x0c: EU433
261 +0x0c: EU433
259 259  
260 -*0x0d: KR920
263 +0x0d: KR920
261 261  
262 -*0x0e: MA869
265 +0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,7 +283,7 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
287 287  
288 288  For example:
289 289  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
296 296  
297 297  2. All modes share the same Payload Explanation from HERE.
298 298  
... ... @@ -304,8 +304,8 @@
304 304  
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
310 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
309 309  |Value|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
... ... @@ -326,8 +326,8 @@
326 326  
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
332 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
331 331  |Value|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
... ... @@ -335,9 +335,8 @@
335 335  )))|(% style="width:189px" %)(((
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by:1) LIDAR-Lite V3HP
339 -Or
340 -2) Ultrasonic Sensor
341 +Distance measure by: 1) LIDAR-Lite V3HP
342 +Or 2) Ultrasonic Sensor
341 341  )))|(% style="width:117px" %)Reserved
342 342  
343 343  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -357,8 +357,8 @@
357 357  
358 358  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 359  
360 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
361 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
362 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 362  |Value|BAT|(% style="width:183px" %)(((
363 363  Temperature(DS18B20)(PC13)
364 364  )))|(% style="width:173px" %)(((
... ... @@ -367,8 +367,7 @@
367 367  ADC(PA4)
368 368  )))|(% style="width:323px" %)(((
369 369  Distance measure by:1)TF-Mini plus LiDAR
370 -Or 
371 -2) TF-Luna LiDAR
372 +Or 2) TF-Luna LiDAR
372 372  )))|(% style="width:188px" %)Distance signal  strength
373 373  
374 374  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -394,9 +394,9 @@
394 394  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
395 395  
396 396  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
397 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
398 398  **Size(bytes)**
399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
400 400  |Value|(% style="width:68px" %)(((
401 401  ADC1(PA4)
402 402  )))|(% style="width:75px" %)(((
... ... @@ -420,7 +420,7 @@
420 420  This mode has total 11 bytes. As shown below:
421 421  
422 422  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
423 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
424 424  |Value|BAT|(% style="width:186px" %)(((
425 425  Temperature1(DS18B20)(PC13)
426 426  )))|(% style="width:82px" %)(((
... ... @@ -461,9 +461,9 @@
461 461  Check the response of this command and adjust the value to match the real value for thing.
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
464 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
465 465  **Size(bytes)**
466 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
467 467  |Value|BAT|(% style="width:193px" %)(((
468 468  Temperature(DS18B20)(PC13)
469 469  )))|(% style="width:85px" %)(((
... ... @@ -475,7 +475,6 @@
475 475  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
476 476  
477 477  
478 -
479 479  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480 480  
481 481  
... ... @@ -489,7 +489,7 @@
489 489  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 490  
491 491  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
493 493  |Value|BAT|(% style="width:256px" %)(((
494 494  Temperature(DS18B20)(PC13)
495 495  )))|(% style="width:108px" %)(((
... ... @@ -507,9 +507,9 @@
507 507  
508 508  
509 509  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
511 511  **Size(bytes)**
512 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
513 513  |Value|BAT|(% style="width:188px" %)(((
514 514  Temperature(DS18B20)
515 515  (PC13)
... ... @@ -526,9 +526,9 @@
526 526  
527 527  
528 528  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
530 530  **Size(bytes)**
531 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
532 532  |Value|BAT|(% style="width:207px" %)(((
533 533  Temperature(DS18B20)
534 534  (PC13)
... ... @@ -549,9 +549,9 @@
549 549  
550 550  
551 551  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
553 553  **Size(bytes)**
554 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
555 555  |Value|BAT|(((
556 556  Temperature
557 557  (DS18B20)(PC13)
... ... @@ -588,6 +588,108 @@
588 588  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 590  
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
592 +
593 +
594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595 +
596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597 +
598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
599 +
600 +
601 +===== 2.3.2.10.a  Uplink, PWM input capture =====
602 +
603 +
604 +[[image:image-20230817172209-2.png||height="439" width="683"]]
605 +
606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
608 +|Value|Bat|(% style="width:191px" %)(((
609 +Temperature(DS18B20)(PC13)
610 +)))|(% style="width:78px" %)(((
611 +ADC(PA4)
612 +)))|(% style="width:135px" %)(((
613 +PWM_Setting
614 +&Digital Interrupt(PA8)
615 +)))|(% style="width:70px" %)(((
616 +Pulse period
617 +)))|(% style="width:89px" %)(((
618 +Duration of high level
619 +)))
620 +
621 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
622 +
623 +
624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
625 +
626 +**Frequency:**
627 +
628 +(% class="MsoNormal" %)
629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
630 +
631 +(% class="MsoNormal" %)
632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
633 +
634 +
635 +(% class="MsoNormal" %)
636 +**Duty cycle:**
637 +
638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639 +
640 +[[image:image-20230818092200-1.png||height="344" width="627"]]
641 +
642 +
643 +===== 2.3.2.10.b  Uplink, PWM output =====
644 +
645 +
646 +[[image:image-20230817172209-2.png||height="439" width="683"]]
647 +
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
649 +
650 +a is the time delay of the output, the unit is ms.
651 +
652 +b is the output frequency, the unit is HZ.
653 +
654 +c is the duty cycle of the output, the unit is %.
655 +
656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
657 +
658 +aa is the time delay of the output, the unit is ms.
659 +
660 +bb is the output frequency, the unit is HZ.
661 +
662 +cc is the duty cycle of the output, the unit is %.
663 +
664 +
665 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
666 +
667 +The oscilloscope displays as follows:
668 +
669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
670 +
671 +
672 +===== 2.3.2.10.c  Downlink, PWM output =====
673 +
674 +
675 +[[image:image-20230817173800-3.png||height="412" width="685"]]
676 +
677 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
678 +
679 + xx xx xx is the output frequency, the unit is HZ.
680 +
681 + yy is the duty cycle of the output, the unit is %.
682 +
683 + zz zz is the time delay of the output, the unit is ms.
684 +
685 +
686 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
687 +
688 +The oscilloscope displays as follows:
689 +
690 +[[image:image-20230817173858-5.png||height="634" width="843"]]
691 +
692 +
591 591  === 2.3.3  ​Decode payload ===
592 592  
593 593  
... ... @@ -597,13 +597,13 @@
597 597  
598 598  The payload decoder function for TTN V3 are here:
599 599  
600 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
702 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601 601  
602 602  
603 603  ==== 2.3.3.1 Battery Info ====
604 604  
605 605  
606 -Check the battery voltage for SN50v3-LB.
708 +Check the battery voltage for SN50v3-LB/LS.
607 607  
608 608  Ex1: 0x0B45 = 2885mV
609 609  
... ... @@ -651,9 +651,9 @@
651 651  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
652 652  
653 653  
654 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
756 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
655 655  
656 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
758 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
657 657  
658 658  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
659 659  
... ... @@ -661,10 +661,16 @@
661 661  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
662 662  
663 663  
766 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
767 +
768 +[[image:image-20230811113449-1.png||height="370" width="608"]]
769 +
770 +
771 +
664 664  ==== 2.3.3.5 Digital Interrupt ====
665 665  
666 666  
667 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
668 668  
669 669  (% style="color:blue" %)** Interrupt connection method:**
670 670  
... ... @@ -677,18 +677,18 @@
677 677  
678 678  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
679 679  
680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
681 681  
682 682  
683 683  (% style="color:blue" %)**Below is the installation example:**
684 684  
685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
686 686  
687 687  * (((
688 -One pin to SN50v3-LB's PA8 pin
796 +One pin to SN50v3-LB/LS's PA8 pin
689 689  )))
690 690  * (((
691 -The other pin to SN50v3-LB's VDD pin
799 +The other pin to SN50v3-LB/LS's VDD pin
692 692  )))
693 693  
694 694  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -724,7 +724,7 @@
724 724  
725 725  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
726 726  
727 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
728 728  
729 729  
730 730  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -758,7 +758,7 @@
758 758  
759 759  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
760 760  
761 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
762 762  
763 763  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
764 764  
... ... @@ -767,7 +767,7 @@
767 767  [[image:image-20230512173903-6.png||height="596" width="715"]]
768 768  
769 769  
770 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 771  
772 772  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
773 773  
... ... @@ -779,13 +779,13 @@
779 779  ==== 2.3.3.9  Battery Output - BAT pin ====
780 780  
781 781  
782 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
783 783  
784 784  
785 785  ==== 2.3.3.10  +5V Output ====
786 786  
787 787  
788 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
789 789  
790 790  The 5V output time can be controlled by AT Command.
791 791  
... ... @@ -807,9 +807,37 @@
807 807  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
808 808  
809 809  
810 -==== 2.3.3.12  Working MOD ====
918 +==== 2.3.3.12  PWM MOD ====
811 811  
812 812  
921 +* (((
922 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
923 +)))
924 +* (((
925 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
926 +)))
927 +
928 + [[image:image-20230817183249-3.png||height="320" width="417"]]
929 +
930 +* (((
931 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
932 +)))
933 +* (((
934 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
935 +)))
936 +* (((
937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
938 +
939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
940 +
941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
942 +
943 +b) If the output duration is more than 30 seconds, better to use external power source. 
944 +)))
945 +
946 +==== 2.3.3.13  Working MOD ====
947 +
948 +
813 813  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
814 814  
815 815  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -825,9 +825,8 @@
825 825  * 6: MOD7
826 826  * 7: MOD8
827 827  * 8: MOD9
964 +* 9: MOD10
828 828  
829 -
830 -
831 831  == 2.4 Payload Decoder file ==
832 832  
833 833  
... ... @@ -841,24 +841,22 @@
841 841  == 2.5 Frequency Plans ==
842 842  
843 843  
844 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
845 845  
846 846  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
847 847  
848 848  
849 -= 3. Configure SN50v3-LB =
984 += 3. Configure SN50v3-LB/LS =
850 850  
851 851  == 3.1 Configure Methods ==
852 852  
853 853  
854 -SN50v3-LB supports below configure method:
989 +SN50v3-LB/LS supports below configure method:
855 855  
856 856  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
857 857  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
858 858  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
859 859  
860 -
861 -
862 862  == 3.2 General Commands ==
863 863  
864 864  
... ... @@ -872,10 +872,10 @@
872 872  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
873 873  
874 874  
875 -== 3.3 Commands special design for SN50v3-LB ==
1008 +== 3.3 Commands special design for SN50v3-LB/LS ==
876 876  
877 877  
878 -These commands only valid for SN50v3-LB, as below:
1011 +These commands only valid for SN50v3-LB/LS, as below:
879 879  
880 880  
881 881  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -886,7 +886,7 @@
886 886  (% style="color:blue" %)**AT Command: AT+TDC**
887 887  
888 888  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
889 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
890 890  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
891 891  30000
892 892  OK
... ... @@ -906,8 +906,6 @@
906 906  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
907 907  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
908 908  
909 -
910 -
911 911  === 3.3.2 Get Device Status ===
912 912  
913 913  
... ... @@ -923,10 +923,10 @@
923 923  
924 924  Feature, Set Interrupt mode for GPIO_EXIT.
925 925  
926 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
927 927  
928 928  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
929 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
930 930  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
931 931  0
932 932  OK
... ... @@ -956,8 +956,6 @@
956 956  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
957 957  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
958 958  
959 -
960 -
961 961  === 3.3.4 Set Power Output Duration ===
962 962  
963 963  
... ... @@ -972,7 +972,7 @@
972 972  (% style="color:blue" %)**AT Command: AT+5VT**
973 973  
974 974  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
975 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
976 976  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
977 977  500(default)
978 978  OK
... ... @@ -990,8 +990,6 @@
990 990  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
991 991  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
992 992  
993 -
994 -
995 995  === 3.3.5 Set Weighing parameters ===
996 996  
997 997  
... ... @@ -1000,9 +1000,9 @@
1000 1000  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1001 1001  
1002 1002  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1003 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1004 1004  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1005 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1006 1006  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1007 1007  
1008 1008  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1017,8 +1017,6 @@
1017 1017  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1018 1018  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1019 1019  
1020 -
1021 -
1022 1022  === 3.3.6 Set Digital pulse count value ===
1023 1023  
1024 1024  
... ... @@ -1029,7 +1029,7 @@
1029 1029  (% style="color:blue" %)**AT Command: AT+SETCNT**
1030 1030  
1031 1031  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1032 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1033 1033  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1034 1034  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1035 1035  
... ... @@ -1042,8 +1042,6 @@
1042 1042  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1043 1043  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1044 1044  
1045 -
1046 -
1047 1047  === 3.3.7 Set Workmode ===
1048 1048  
1049 1049  
... ... @@ -1052,7 +1052,7 @@
1052 1052  (% style="color:blue" %)**AT Command: AT+MOD**
1053 1053  
1054 1054  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1056 1056  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1057 1057  OK
1058 1058  )))
... ... @@ -1068,13 +1068,97 @@
1068 1068  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1069 1069  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1070 1070  
1194 +=== 3.3.8 PWM setting ===
1071 1071  
1072 1072  
1073 -= 4. Battery & Power Consumption =
1197 +Feature: Set the time acquisition unit for PWM input capture.
1074 1074  
1199 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1075 1075  
1076 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1201 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1204 +0(default)
1205 +OK
1206 +)))
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 +OK
1209 +
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1077 1077  
1213 +(% style="color:blue" %)**Downlink Command: 0x0C**
1214 +
1215 +Format: Command Code (0x0C) followed by 1 bytes.
1216 +
1217 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 +
1220 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1221 +
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 +
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +OK
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1231 +OK
1232 +
1233 +)))
1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1236 +
1237 +
1238 +)))|(% style="width:137px" %)(((
1239 +OK
1240 +)))
1241 +
1242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1244 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1245 +AT+PWMOUT=a,b,c
1246 +
1247 +
1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1249 +Set PWM output time, output frequency and output duty cycle.
1250 +
1251 +(((
1252 +
1253 +)))
1254 +
1255 +(((
1256 +
1257 +)))
1258 +)))|(% style="width:242px" %)(((
1259 +a: Output time (unit: seconds)
1260 +The value ranges from 0 to 65535.
1261 +When a=65535, PWM will always output.
1262 +)))
1263 +|(% style="width:242px" %)(((
1264 +b: Output frequency (unit: HZ)
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +c: Output duty cycle (unit: %)
1268 +The value ranges from 0 to 100.
1269 +)))
1270 +
1271 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1272 +
1273 +Format: Command Code (0x0B01) followed by 6 bytes.
1274 +
1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1276 +
1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1279 +
1280 += 4. Battery & Power Cons =
1281 +
1282 +
1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1284 +
1078 1078  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1079 1079  
1080 1080  
... ... @@ -1082,7 +1082,7 @@
1082 1082  
1083 1083  
1084 1084  (% class="wikigeneratedid" %)
1085 -**User can change firmware SN50v3-LB to:**
1292 +**User can change firmware SN50v3-LB/LS to:**
1086 1086  
1087 1087  * Change Frequency band/ region.
1088 1088  * Update with new features.
... ... @@ -1092,25 +1092,37 @@
1092 1092  
1093 1093  **Methods to Update Firmware:**
1094 1094  
1095 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1096 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1302 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1303 +* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1097 1097  
1098 -
1099 -
1100 1100  = 6. FAQ =
1101 1101  
1102 -== 6.1 Where can i find source code of SN50v3-LB? ==
1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1103 1103  
1104 1104  
1105 1105  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1106 1106  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1107 1107  
1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1108 1108  
1109 1109  
1316 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1317 +
1318 +
1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1320 +
1321 +
1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1323 +
1324 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1325 +
1326 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1327 +
1328 +
1110 1110  = 7. Order Info =
1111 1111  
1112 1112  
1113 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1114 1114  
1115 1115  (% style="color:red" %)**XX**(%%): The default frequency band
1116 1116  
... ... @@ -1130,14 +1130,12 @@
1130 1130  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1131 1131  * (% style="color:red" %)**NH**(%%): No Hole
1132 1132  
1133 -
1134 -
1135 1135  = 8. ​Packing Info =
1136 1136  
1137 1137  
1138 1138  (% style="color:#037691" %)**Package Includes**:
1139 1139  
1140 -* SN50v3-LB LoRaWAN Generic Node
1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1141 1141  
1142 1142  (% style="color:#037691" %)**Dimension and weight**:
1143 1143  
... ... @@ -1146,8 +1146,6 @@
1146 1146  * Package Size / pcs : cm
1147 1147  * Weight / pcs : g
1148 1148  
1149 -
1150 -
1151 1151  = 9. Support =
1152 1152  
1153 1153  
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0