Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -43,7 +43,6 @@ 43 43 44 44 == 1.3 Specification == 45 45 46 - 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,7 +80,6 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 - 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -123,7 +123,7 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -136,9 +136,8 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== 1.9Hole Option ==138 +== Hole Option == 140 140 141 - 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -216,12 +216,12 @@ 216 216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,202 +277,186 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 - 293 -3. By default, the device will send an uplink message every 20 minutes. 294 - 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 - 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 303 -|Value|Bat|(% style="width:191px" %)((( 304 -Temperature(DS18B20)(PC13) 305 -)))|(% style="width:78px" %)((( 306 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 307 307 )))|(% style="width:216px" %)((( 308 -Digital in(PB15)&Digital Interrupt(PA8) 309 -)))|(% style="width:308px" %)((( 310 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 311 -)))|(% style="width:154px" %)((( 312 -Humidity(SHT20 or SHT31) 313 -))) 305 +Digital in & Digital Interrupt 314 314 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 316 316 317 317 318 318 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 319 319 320 - 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 325 -|Value|BAT|(% style="width:196px" %)((( 326 -Temperature(DS18B20)(PC13) 327 -)))|(% style="width:87px" %)((( 328 -ADC(PA4) 329 -)))|(% style="width:189px" %)((( 330 -Digital in(PB15) & Digital Interrupt(PA8) 331 -)))|(% style="width:208px" %)((( 332 -Distance measure by:1) LIDAR-Lite V3HP 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 333 333 Or 334 334 2) Ultrasonic Sensor 335 -)))| (% style="width:117px" %)Reserved325 +)))|Reserved 336 336 337 337 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 338 338 329 +**Connection of LIDAR-Lite V3HP:** 339 339 340 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 341 - 342 342 [[image:image-20230512173758-5.png||height="563" width="712"]] 343 343 333 +**Connection to Ultrasonic Sensor:** 344 344 345 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 346 - 347 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 348 - 349 349 [[image:image-20230512173903-6.png||height="596" width="715"]] 350 350 351 - 352 352 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 353 353 354 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 355 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 356 -|Value|BAT|(% style="width:183px" %)((( 357 -Temperature(DS18B20)(PC13) 358 -)))|(% style="width:173px" %)((( 359 -Digital in(PB15) & Digital Interrupt(PA8) 360 -)))|(% style="width:84px" %)((( 361 -ADC(PA4) 362 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 363 363 Distance measure by:1)TF-Mini plus LiDAR 364 364 Or 365 365 2) TF-Luna LiDAR 366 -)))| (% style="width:188px" %)Distance signal strength346 +)))|Distance signal strength 367 367 368 368 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 369 369 370 - 371 371 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 372 372 373 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 374 374 375 375 [[image:image-20230512180609-7.png||height="555" width="802"]] 376 376 377 - 378 378 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 379 379 380 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 381 381 382 -[[image:i mage-20230513105207-4.png||height="469" width="802"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 383 383 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 384 384 364 + 385 385 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 386 386 387 - 388 388 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 389 389 390 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 391 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 392 392 **Size(bytes)** 393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 394 -|Value|(% style="width:68px" %)((( 395 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 396 396 )))|(% style="width:75px" %)((( 397 -ADC2(PA5) 398 -)))|((( 399 -ADC3(PA8) 400 -)))|((( 401 -Digital Interrupt(PB15) 402 -)))|(% style="width:304px" %)((( 403 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 404 -)))|(% style="width:163px" %)((( 405 -Humidity(SHT20 or SHT31) 406 -)))|(% style="width:53px" %)Bat 377 +ADC2 407 407 408 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 409 409 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 410 410 386 + 411 411 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 412 412 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 413 413 414 414 This mode has total 11 bytes. As shown below: 415 415 416 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 418 -|Value|BAT|(% style="width:186px" %)((( 419 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 420 420 )))|(% style="width:82px" %)((( 421 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 422 422 )))|(% style="width:210px" %)((( 423 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 424 424 )))|(% style="width:191px" %)Temperature2(DS18B20) 425 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 426 426 427 427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 428 428 429 429 430 -[[image:image-20230513134006-1.png||height="559" width="736"]] 431 - 432 - 433 433 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 434 434 435 - 436 436 [[image:image-20230512164658-2.png||height="532" width="729"]] 437 437 438 438 Each HX711 need to be calibrated before used. User need to do below two steps: 439 439 440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 442 442 1. ((( 443 443 Weight has 4 bytes, the unit is g. 444 - 445 - 446 - 447 447 ))) 448 448 449 449 For example: 450 450 451 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 452 452 453 453 Response: Weight is 401 g 454 454 455 455 Check the response of this command and adjust the value to match the real value for thing. 456 456 457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)458 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 459 459 **Size(bytes)** 460 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 461 -|Value|BAT|(% style="width:193px" %)((( 462 -Temperature(DS18B20)(PC13) 463 -)))|(% style="width:85px" %)((( 464 -ADC(PA4) 465 -)))|(% style="width:186px" %)((( 466 -Digital in(PB15) & Digital Interrupt(PA8) 467 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 468 468 469 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]440 +(PC13) 470 470 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 471 471 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 472 472 473 -==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 474 474 453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 475 475 455 + 456 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 457 + 476 476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 477 477 478 478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -479,112 +479,86 @@ 479 479 480 480 [[image:image-20230512181814-9.png||height="543" width="697"]] 481 481 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 482 482 483 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 484 484 485 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 487 -|Value|BAT|(% style="width:256px" %)((( 488 -Temperature(DS18B20)(PC13) 489 -)))|(% style="width:108px" %)((( 490 -ADC(PA4) 491 -)))|(% style="width:126px" %)((( 492 -Digital in(PB15) 493 -)))|(% style="width:145px" %)((( 494 -Count(PA8) 495 -))) 496 - 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 498 498 499 499 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 502 502 503 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 505 505 **Size(bytes)** 506 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 507 -|Value|BAT|(% style="width:188px" %)((( 508 -Temperature(DS18B20) 509 -(PC13) 510 -)))|(% style="width:83px" %)((( 511 -ADC(PA5) 512 -)))|(% style="width:184px" %)((( 513 -Digital Interrupt1(PA8) 514 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 515 515 516 -[[image:image-20230513111203-7.png||height="324" width="975"]] 517 - 518 - 519 519 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 520 520 521 - 522 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 524 524 **Size(bytes)** 525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 526 -|Value|BAT|(% style="width:207px" %)((( 527 -Temperature(DS18B20) 528 -(PC13) 529 -)))|(% style="width:94px" %)((( 530 -ADC1(PA4) 531 -)))|(% style="width:198px" %)((( 532 -Digital Interrupt(PB15) 533 -)))|(% style="width:84px" %)((( 534 -ADC2(PA5) 535 -)))|(% style="width:82px" %)((( 536 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 537 537 ))) 538 538 539 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 540 540 541 541 542 542 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 543 543 544 - 545 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 547 547 **Size(bytes)** 548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 549 -|Value|BAT|((( 550 -Temperature 551 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 552 552 )))|((( 553 -Temperature2 554 -(DS18B20)(PB9) 512 +Temperature2(PA9) 555 555 )))|((( 556 -Digital Interrupt 557 -(PB15) 558 -)))|(% style="width:193px" %)((( 559 -Temperature3 560 -(DS18B20)(PB8) 561 -)))|(% style="width:78px" %)((( 562 -Count1(PA8) 563 -)))|(% style="width:78px" %)((( 564 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 565 565 ))) 566 566 567 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 568 568 569 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 570 570 571 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 572 572 573 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 574 574 575 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 576 576 534 +**AT+SETCNT=aa,bb** 577 577 578 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 579 579 580 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 581 581 582 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 583 583 584 584 585 585 === 2.3.3 Decode payload === 586 586 587 - 588 588 While using TTN V3 network, you can add the payload format to decode the payload. 589 589 590 590 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -591,14 +591,13 @@ 591 591 592 592 The payload decoder function for TTN V3 are here: 593 593 594 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 595 596 596 597 597 ==== 2.3.3.1 Battery Info ==== 598 598 555 +Check the battery voltage for SN50v3. 599 599 600 -Check the battery voltage for SN50v3-LB. 601 - 602 602 Ex1: 0x0B45 = 2885mV 603 603 604 604 Ex2: 0x0B49 = 2889mV ... ... @@ -606,18 +606,16 @@ 606 606 607 607 ==== 2.3.3.2 Temperature (DS18B20) ==== 608 608 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 609 609 610 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 611 611 612 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 613 613 614 -(% style="color:blue" %)**Connection:** 615 - 616 616 [[image:image-20230512180718-8.png||height="538" width="647"]] 617 617 572 +**Example**: 618 618 619 -(% style="color:blue" %)**Example**: 620 - 621 621 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 622 622 623 623 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -627,7 +627,6 @@ 627 627 628 628 ==== 2.3.3.3 Digital Input ==== 629 629 630 - 631 631 The digital input for pin PB15, 632 632 633 633 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -635,61 +635,51 @@ 635 635 636 636 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 637 637 ((( 638 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 639 - 640 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 641 - 642 - 590 +Note:The maximum voltage input supports 3.6V. 643 643 ))) 644 644 593 +(% class="wikigeneratedid" %) 645 645 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 646 646 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 647 647 648 - The measuringrange of theADCis onlyabout0Vto1.1VThe voltage resolution is about0.24mv.598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 649 649 650 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 651 - 652 652 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 653 653 654 654 655 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 656 - 657 - 658 658 ==== 2.3.3.5 Digital Interrupt ==== 659 659 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 660 660 661 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.607 +**~ Interrupt connection method:** 662 662 663 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 664 664 665 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 666 666 667 - 668 -(% style="color:blue" %)**Example to use with door sensor :** 669 - 670 670 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 671 671 672 672 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 673 673 674 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 675 675 619 +**~ Below is the installation example:** 676 676 677 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 678 678 679 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 680 - 681 681 * ((( 682 -One pin to SN50 v3-LB's PA8pin624 +One pin to LSN50's PB14 pin 683 683 ))) 684 684 * ((( 685 -The other pin to SN50 v3-LB's VDDpin627 +The other pin to LSN50's VCC pin 686 686 ))) 687 687 688 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 689 689 690 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 691 691 692 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 693 693 694 694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 695 695 ... ... @@ -699,33 +699,29 @@ 699 699 700 700 The command is: 701 701 702 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 703 703 704 704 Below shows some screen captures in TTN V3: 705 705 706 706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 707 707 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 708 708 709 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 710 - 711 711 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 712 712 713 713 714 714 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 715 715 716 - 717 717 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 718 718 719 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 720 720 721 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LBwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 722 722 723 - 724 724 Below is the connection to SHT20/ SHT31. The connection is as below: 725 725 726 -[[image:image-202 30513103633-3.png||height="448" width="716"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 727 727 728 - 729 729 The device will be able to get the I2C sensor data now and upload to IoT Server. 730 730 731 731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -743,26 +743,20 @@ 743 743 744 744 ==== 2.3.3.7 Distance Reading ==== 745 745 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 746 746 747 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 748 748 749 - 750 750 ==== 2.3.3.8 Ultrasonic Sensor ==== 751 751 752 - 753 753 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 754 754 755 -The SN50 v3-LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 756 756 757 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 758 - 759 759 The picture below shows the connection: 760 760 761 -[[image:image-20230512173903-6.png||height="596" width="715"]] 762 762 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 763 763 764 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 765 - 766 766 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 767 767 768 768 **Example:** ... ... @@ -769,41 +769,50 @@ 769 769 770 770 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 771 771 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 772 772 773 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 774 774 708 +You can see the serial output in ULT mode as below: 775 775 776 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 777 777 712 +**In TTN V3 server:** 778 778 779 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 780 780 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 781 781 782 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 783 783 720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 721 + 722 + 723 +==== 2.3.3.10 +5V Output ==== 724 + 725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 726 + 784 784 The 5V output time can be controlled by AT Command. 785 785 786 - (% style="color:blue" %)**AT+5VT=1000**729 +**AT+5VT=1000** 787 787 788 788 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 789 789 790 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 791 791 792 792 736 + 793 793 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 794 794 795 - 796 796 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 797 797 798 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 799 799 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 800 800 801 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 802 802 803 - 804 804 ==== 2.3.3.12 Working MOD ==== 805 805 806 - 807 807 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 808 808 809 809 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -816,9 +816,6 @@ 816 816 * 3: MOD4 817 817 * 4: MOD5 818 818 * 5: MOD6 819 -* 6: MOD7 820 -* 7: MOD8 821 -* 8: MOD9 822 822 823 823 == 2.4 Payload Decoder file == 824 824 ... ... @@ -827,9 +827,10 @@ 827 827 828 828 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 829 829 830 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 831 831 832 832 771 + 833 833 == 2.5 Frequency Plans == 834 834 835 835 ... ... @@ -865,7 +865,7 @@ 865 865 == 3.3 Commands special design for SN50v3-LB == 866 866 867 867 868 -These commands only valid for S N50v3-LB, as below:807 +These commands only valid for S31x-LB, as below: 869 869 870 870 871 871 === 3.3.1 Set Transmit Interval Time === ... ... @@ -898,29 +898,28 @@ 898 898 899 899 === 3.3.2 Get Device Status === 900 900 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 901 901 902 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 903 903 904 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 905 905 906 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 907 907 847 +=== 3.3.7 Set Interrupt Mode === 908 908 909 -=== 3.3.3 Set Interrupt Mode === 910 910 911 - 912 912 Feature, Set Interrupt mode for GPIO_EXIT. 913 913 914 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 915 915 916 916 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 917 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**918 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 919 919 0 920 920 OK 921 921 the mode is 0 =Disable Interrupt 922 922 ))) 923 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 924 924 Set Transmit Interval 925 925 0. (Disable Interrupt), 926 926 ~1. (Trigger by rising and falling edge) ... ... @@ -927,11 +927,6 @@ 927 927 2. (Trigger by falling edge) 928 928 3. (Trigger by rising edge) 929 929 )))|(% style="width:157px" %)OK 930 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 931 -Set Transmit Interval 932 -trigger by rising edge. 933 -)))|(% style="width:157px" %)OK 934 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 935 935 936 936 (% style="color:blue" %)**Downlink Command: 0x06** 937 937 ... ... @@ -939,115 +939,9 @@ 939 939 940 940 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 941 941 942 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 943 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 944 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 945 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 946 946 947 -=== 3.3.4 Set Power Output Duration === 948 - 949 - 950 -Control the output duration 5V . Before each sampling, device will 951 - 952 -~1. first enable the power output to external sensor, 953 - 954 -2. keep it on as per duration, read sensor value and construct uplink payload 955 - 956 -3. final, close the power output. 957 - 958 -(% style="color:blue" %)**AT Command: AT+5VT** 959 - 960 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 961 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 962 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 963 -500(default) 964 -OK 965 -))) 966 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 967 -Close after a delay of 1000 milliseconds. 968 -)))|(% style="width:157px" %)OK 969 - 970 -(% style="color:blue" %)**Downlink Command: 0x07** 971 - 972 -Format: Command Code (0x07) followed by 2 bytes. 973 - 974 -The first and second bytes are the time to turn on. 975 - 976 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 977 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 978 - 979 -=== 3.3.5 Set Weighing parameters === 980 - 981 - 982 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 983 - 984 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 985 - 986 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 987 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 988 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 989 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 990 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 991 - 992 -(% style="color:blue" %)**Downlink Command: 0x08** 993 - 994 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 995 - 996 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 997 - 998 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 999 - 1000 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1001 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1002 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1003 - 1004 -=== 3.3.6 Set Digital pulse count value === 1005 - 1006 - 1007 -Feature: Set the pulse count value. 1008 - 1009 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1010 - 1011 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1012 - 1013 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1014 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1015 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1016 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1017 - 1018 -(% style="color:blue" %)**Downlink Command: 0x09** 1019 - 1020 -Format: Command Code (0x09) followed by 5 bytes. 1021 - 1022 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1023 - 1024 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1025 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1026 - 1027 -=== 3.3.7 Set Workmode === 1028 - 1029 - 1030 -Feature: Switch working mode. 1031 - 1032 -(% style="color:blue" %)**AT Command: AT+MOD** 1033 - 1034 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1035 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1036 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1037 -OK 1038 -))) 1039 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1040 -OK 1041 -Attention:Take effect after ATZ 1042 -))) 1043 - 1044 -(% style="color:blue" %)**Downlink Command: 0x0A** 1045 - 1046 -Format: Command Code (0x0A) followed by 1 bytes. 1047 - 1048 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1049 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1050 - 1051 1051 = 4. Battery & Power Consumption = 1052 1052 1053 1053 ... ... @@ -1060,16 +1060,17 @@ 1060 1060 1061 1061 1062 1062 (% class="wikigeneratedid" %) 1063 - **User can change firmware SN50v3-LB to:**890 +User can change firmware SN50v3-LB to: 1064 1064 1065 1065 * Change Frequency band/ region. 1066 1066 * Update with new features. 1067 1067 * Fix bugs. 1068 1068 1069 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1070 1070 1071 -**Methods to Update Firmware:** 1072 1072 899 +Methods to Update Firmware: 900 + 1073 1073 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1074 1074 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1075 1075 ... ... @@ -1077,10 +1077,10 @@ 1077 1077 1078 1078 == 6.1 Where can i find source code of SN50v3-LB? == 1079 1079 1080 - 1081 1081 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1082 1082 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1083 1083 911 + 1084 1084 = 7. Order Info = 1085 1085 1086 1086 ... ... @@ -1106,7 +1106,6 @@ 1106 1106 1107 1107 = 8. Packing Info = 1108 1108 1109 - 1110 1110 (% style="color:#037691" %)**Package Includes**: 1111 1111 1112 1112 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1122,5 +1122,4 @@ 1122 1122 1123 1123 1124 1124 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1125 - 1126 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content