Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,10 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 - 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,10 +79,8 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 - 86 86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 87 87 88 88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -107,7 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -126,7 +126,7 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-20230 610162852-1.png||height="466" width="802"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 130 130 131 131 132 132 == 1.8 Mechanical == ... ... @@ -139,9 +139,8 @@ 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -== 1.9Hole Option ==138 +== Hole Option == 143 143 144 - 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 146 146 147 147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -154,7 +154,7 @@ 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,7 +162,7 @@ 162 162 163 163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 164 164 165 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -211,7 +211,7 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 ... ... @@ -219,12 +219,12 @@ 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 ... ... @@ -280,202 +280,186 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 284 284 285 285 For example: 286 286 287 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 288 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 293 293 294 -2. All modes share the same Payload Explanation from HERE. 295 - 296 -3. By default, the device will send an uplink message every 20 minutes. 297 - 298 - 299 299 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 300 300 301 - 302 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 303 303 304 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 -|Value|Bat|(% style="width:191px" %)((( 307 -Temperature(DS18B20)(PC13) 308 -)))|(% style="width:78px" %)((( 309 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 310 310 )))|(% style="width:216px" %)((( 311 -Digital in(PB15)&Digital Interrupt(PA8) 312 -)))|(% style="width:308px" %)((( 313 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 -)))|(% style="width:154px" %)((( 315 -Humidity(SHT20 or SHT31) 316 -))) 305 +Digital in & Digital Interrupt 317 317 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 318 318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 319 319 320 320 321 321 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 322 322 323 - 324 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 325 325 326 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 -|Value|BAT|(% style="width:196px" %)((( 329 -Temperature(DS18B20)(PC13) 330 -)))|(% style="width:87px" %)((( 331 -ADC(PA4) 332 -)))|(% style="width:189px" %)((( 333 -Digital in(PB15) & Digital Interrupt(PA8) 334 -)))|(% style="width:208px" %)((( 335 -Distance measure by:1) LIDAR-Lite V3HP 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 336 336 Or 337 337 2) Ultrasonic Sensor 338 -)))| (% style="width:117px" %)Reserved325 +)))|Reserved 339 339 340 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 341 341 329 +**Connection of LIDAR-Lite V3HP:** 342 342 343 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 344 - 345 345 [[image:image-20230512173758-5.png||height="563" width="712"]] 346 346 333 +**Connection to Ultrasonic Sensor:** 347 347 348 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 349 - 350 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 351 - 352 352 [[image:image-20230512173903-6.png||height="596" width="715"]] 353 353 354 - 355 355 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 356 356 357 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 359 -|Value|BAT|(% style="width:183px" %)((( 360 -Temperature(DS18B20)(PC13) 361 -)))|(% style="width:173px" %)((( 362 -Digital in(PB15) & Digital Interrupt(PA8) 363 -)))|(% style="width:84px" %)((( 364 -ADC(PA4) 365 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 366 366 Distance measure by:1)TF-Mini plus LiDAR 367 367 Or 368 368 2) TF-Luna LiDAR 369 -)))| (% style="width:188px" %)Distance signal strength346 +)))|Distance signal strength 370 370 371 371 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 372 372 373 - 374 374 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 375 375 376 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 377 377 378 378 [[image:image-20230512180609-7.png||height="555" width="802"]] 379 379 380 - 381 381 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 382 382 383 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 384 384 385 -[[image:i mage-20230513105207-4.png||height="469" width="802"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 386 386 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 387 387 364 + 388 388 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 389 389 390 - 391 391 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 392 392 393 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 394 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 395 395 **Size(bytes)** 396 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 397 -|Value|(% style="width:68px" %)((( 398 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 399 399 )))|(% style="width:75px" %)((( 400 -ADC2(PA5) 401 -)))|((( 402 -ADC3(PA8) 403 -)))|((( 404 -Digital Interrupt(PB15) 405 -)))|(% style="width:304px" %)((( 406 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 407 -)))|(% style="width:163px" %)((( 408 -Humidity(SHT20 or SHT31) 409 -)))|(% style="width:53px" %)Bat 377 +ADC2 410 410 411 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 412 412 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 413 413 386 + 414 414 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 415 415 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 416 416 417 417 This mode has total 11 bytes. As shown below: 418 418 419 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 420 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 421 -|Value|BAT|(% style="width:186px" %)((( 422 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 423 423 )))|(% style="width:82px" %)((( 424 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 425 425 )))|(% style="width:210px" %)((( 426 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 427 427 )))|(% style="width:191px" %)Temperature2(DS18B20) 428 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 429 429 430 430 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 431 431 432 432 433 -[[image:image-20230513134006-1.png||height="559" width="736"]] 434 - 435 - 436 436 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 437 437 438 - 439 439 [[image:image-20230512164658-2.png||height="532" width="729"]] 440 440 441 441 Each HX711 need to be calibrated before used. User need to do below two steps: 442 442 443 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 445 445 1. ((( 446 446 Weight has 4 bytes, the unit is g. 447 - 448 - 449 - 450 450 ))) 451 451 452 452 For example: 453 453 454 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 455 455 456 456 Response: Weight is 401 g 457 457 458 458 Check the response of this command and adjust the value to match the real value for thing. 459 459 460 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)461 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 462 462 **Size(bytes)** 463 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 464 -|Value|BAT|(% style="width:193px" %)((( 465 -Temperature(DS18B20)(PC13) 466 -)))|(% style="width:85px" %)((( 467 -ADC(PA4) 468 -)))|(% style="width:186px" %)((( 469 -Digital in(PB15) & Digital Interrupt(PA8) 470 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 471 471 472 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]440 +(PC13) 473 473 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 474 474 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 475 475 476 -==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 477 477 453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 478 478 455 + 456 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 457 + 479 479 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 480 480 481 481 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -482,112 +482,86 @@ 482 482 483 483 [[image:image-20230512181814-9.png||height="543" width="697"]] 484 484 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 485 485 486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 487 487 488 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 -|Value|BAT|(% style="width:256px" %)((( 491 -Temperature(DS18B20)(PC13) 492 -)))|(% style="width:108px" %)((( 493 -ADC(PA4) 494 -)))|(% style="width:126px" %)((( 495 -Digital in(PB15) 496 -)))|(% style="width:145px" %)((( 497 -Count(PA8) 498 -))) 499 - 500 500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 501 501 502 502 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 505 505 506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 508 508 **Size(bytes)** 509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 -|Value|BAT|(% style="width:188px" %)((( 511 -Temperature(DS18B20) 512 -(PC13) 513 -)))|(% style="width:83px" %)((( 514 -ADC(PA5) 515 -)))|(% style="width:184px" %)((( 516 -Digital Interrupt1(PA8) 517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 518 518 519 -[[image:image-20230513111203-7.png||height="324" width="975"]] 520 - 521 - 522 522 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 523 523 524 - 525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 527 527 **Size(bytes)** 528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 -|Value|BAT|(% style="width:207px" %)((( 530 -Temperature(DS18B20) 531 -(PC13) 532 -)))|(% style="width:94px" %)((( 533 -ADC1(PA4) 534 -)))|(% style="width:198px" %)((( 535 -Digital Interrupt(PB15) 536 -)))|(% style="width:84px" %)((( 537 -ADC2(PA5) 538 -)))|(% style="width:82px" %)((( 539 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 540 540 ))) 541 541 542 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 543 543 544 544 545 545 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 546 546 547 - 548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 550 550 **Size(bytes)** 551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 552 -|Value|BAT|((( 553 -Temperature 554 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 555 555 )))|((( 556 -Temperature2 557 -(DS18B20)(PB9) 512 +Temperature2(PA9) 558 558 )))|((( 559 -Digital Interrupt 560 -(PB15) 561 -)))|(% style="width:193px" %)((( 562 -Temperature3 563 -(DS18B20)(PB8) 564 -)))|(% style="width:78px" %)((( 565 -Count1(PA8) 566 -)))|(% style="width:78px" %)((( 567 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 568 568 ))) 569 569 570 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 571 571 572 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 573 573 574 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 575 575 576 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 577 577 578 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 579 579 534 +**AT+SETCNT=aa,bb** 580 580 581 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 582 582 583 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 588 588 === 2.3.3 Decode payload === 589 589 590 - 591 591 While using TTN V3 network, you can add the payload format to decode the payload. 592 592 593 593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -594,14 +594,13 @@ 594 594 595 595 The payload decoder function for TTN V3 are here: 596 596 597 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 598 598 599 599 600 600 ==== 2.3.3.1 Battery Info ==== 601 601 555 +Check the battery voltage for SN50v3. 602 602 603 -Check the battery voltage for SN50v3-LB. 604 - 605 605 Ex1: 0x0B45 = 2885mV 606 606 607 607 Ex2: 0x0B49 = 2889mV ... ... @@ -609,18 +609,16 @@ 609 609 610 610 ==== 2.3.3.2 Temperature (DS18B20) ==== 611 611 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 612 612 613 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 614 614 615 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 616 616 617 -(% style="color:blue" %)**Connection:** 618 - 619 619 [[image:image-20230512180718-8.png||height="538" width="647"]] 620 620 572 +**Example**: 621 621 622 -(% style="color:blue" %)**Example**: 623 - 624 624 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 625 625 626 626 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -630,7 +630,6 @@ 630 630 631 631 ==== 2.3.3.3 Digital Input ==== 632 632 633 - 634 634 The digital input for pin PB15, 635 635 636 636 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -638,61 +638,51 @@ 638 638 639 639 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 640 640 ((( 641 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 642 - 643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 - 645 - 590 +Note:The maximum voltage input supports 3.6V. 646 646 ))) 647 647 593 +(% class="wikigeneratedid" %) 648 648 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 649 649 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 650 650 651 - The measuringrange of theADCis onlyabout0Vto1.1VThe voltage resolution is about0.24mv.598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 652 652 653 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 654 - 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 656 656 657 657 658 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 659 - 660 - 661 661 ==== 2.3.3.5 Digital Interrupt ==== 662 662 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 663 663 664 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.607 +**~ Interrupt connection method:** 665 665 666 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 667 667 668 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 669 669 670 - 671 -(% style="color:blue" %)**Example to use with door sensor :** 672 - 673 673 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 674 674 675 675 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 676 676 677 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 678 678 619 +**~ Below is the installation example:** 679 679 680 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 681 681 682 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 - 684 684 * ((( 685 -One pin to SN50 v3-LB's PA8pin624 +One pin to LSN50's PB14 pin 686 686 ))) 687 687 * ((( 688 -The other pin to SN50 v3-LB's VDDpin627 +The other pin to LSN50's VCC pin 689 689 ))) 690 690 691 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 692 692 693 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 694 694 695 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 696 696 697 697 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 698 698 ... ... @@ -702,33 +702,29 @@ 702 702 703 703 The command is: 704 704 705 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 706 706 707 707 Below shows some screen captures in TTN V3: 708 708 709 709 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 710 710 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 711 711 712 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 - 714 714 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 715 715 716 716 717 717 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 718 718 719 - 720 720 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 721 721 722 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 723 723 724 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LBwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 725 725 726 - 727 727 Below is the connection to SHT20/ SHT31. The connection is as below: 728 728 729 -[[image:image-202 30513103633-3.png||height="448" width="716"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 730 730 731 - 732 732 The device will be able to get the I2C sensor data now and upload to IoT Server. 733 733 734 734 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -746,26 +746,20 @@ 746 746 747 747 ==== 2.3.3.7 Distance Reading ==== 748 748 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 749 749 750 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 751 751 752 - 753 753 ==== 2.3.3.8 Ultrasonic Sensor ==== 754 754 755 - 756 756 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 757 757 758 -The SN50 v3-LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 759 759 760 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 761 - 762 762 The picture below shows the connection: 763 763 764 -[[image:image-20230512173903-6.png||height="596" width="715"]] 765 765 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 766 766 767 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 - 769 769 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 770 770 771 771 **Example:** ... ... @@ -772,41 +772,50 @@ 772 772 773 773 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 774 774 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 775 775 776 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 777 777 708 +You can see the serial output in ULT mode as below: 778 778 779 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 780 780 712 +**In TTN V3 server:** 781 781 782 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 783 783 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 784 784 785 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 786 786 720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 721 + 722 + 723 +==== 2.3.3.10 +5V Output ==== 724 + 725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 726 + 787 787 The 5V output time can be controlled by AT Command. 788 788 789 - (% style="color:blue" %)**AT+5VT=1000**729 +**AT+5VT=1000** 790 790 791 791 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 792 792 793 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 794 794 795 795 736 + 796 796 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 797 797 798 - 799 799 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 800 800 801 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 802 802 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 803 803 804 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 805 805 806 - 807 807 ==== 2.3.3.12 Working MOD ==== 808 808 809 - 810 810 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 811 811 812 812 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -819,11 +819,7 @@ 819 819 * 3: MOD4 820 820 * 4: MOD5 821 821 * 5: MOD6 822 -* 6: MOD7 823 -* 7: MOD8 824 -* 8: MOD9 825 825 826 - 827 827 == 2.4 Payload Decoder file == 828 828 829 829 ... ... @@ -831,9 +831,10 @@ 831 831 832 832 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 833 833 834 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 835 835 836 836 771 + 837 837 == 2.5 Frequency Plans == 838 838 839 839 ... ... @@ -853,7 +853,6 @@ 853 853 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 854 854 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 855 855 856 - 857 857 == 3.2 General Commands == 858 858 859 859 ... ... @@ -870,7 +870,7 @@ 870 870 == 3.3 Commands special design for SN50v3-LB == 871 871 872 872 873 -These commands only valid for S N50v3-LB, as below:807 +These commands only valid for S31x-LB, as below: 874 874 875 875 876 876 === 3.3.1 Set Transmit Interval Time === ... ... @@ -901,32 +901,30 @@ 901 901 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 902 902 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 903 903 904 - 905 905 === 3.3.2 Get Device Status === 906 906 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 907 907 908 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 909 909 910 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 911 911 912 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 913 913 847 +=== 3.3.7 Set Interrupt Mode === 914 914 915 -=== 3.3.3 Set Interrupt Mode === 916 916 917 - 918 918 Feature, Set Interrupt mode for GPIO_EXIT. 919 919 920 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 921 921 922 922 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 923 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**924 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 925 925 0 926 926 OK 927 927 the mode is 0 =Disable Interrupt 928 928 ))) 929 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 930 930 Set Transmit Interval 931 931 0. (Disable Interrupt), 932 932 ~1. (Trigger by rising and falling edge) ... ... @@ -933,11 +933,6 @@ 933 933 2. (Trigger by falling edge) 934 934 3. (Trigger by rising edge) 935 935 )))|(% style="width:157px" %)OK 936 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 937 -Set Transmit Interval 938 -trigger by rising edge. 939 -)))|(% style="width:157px" %)OK 940 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 941 941 942 942 (% style="color:blue" %)**Downlink Command: 0x06** 943 943 ... ... @@ -945,120 +945,9 @@ 945 945 946 946 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 947 947 948 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 949 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 950 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 951 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 952 952 953 - 954 -=== 3.3.4 Set Power Output Duration === 955 - 956 - 957 -Control the output duration 5V . Before each sampling, device will 958 - 959 -~1. first enable the power output to external sensor, 960 - 961 -2. keep it on as per duration, read sensor value and construct uplink payload 962 - 963 -3. final, close the power output. 964 - 965 -(% style="color:blue" %)**AT Command: AT+5VT** 966 - 967 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 968 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 969 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 970 -500(default) 971 -OK 972 -))) 973 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 974 -Close after a delay of 1000 milliseconds. 975 -)))|(% style="width:157px" %)OK 976 - 977 -(% style="color:blue" %)**Downlink Command: 0x07** 978 - 979 -Format: Command Code (0x07) followed by 2 bytes. 980 - 981 -The first and second bytes are the time to turn on. 982 - 983 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 984 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 985 - 986 - 987 -=== 3.3.5 Set Weighing parameters === 988 - 989 - 990 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 991 - 992 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 993 - 994 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 995 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 996 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 997 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 998 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 999 - 1000 -(% style="color:blue" %)**Downlink Command: 0x08** 1001 - 1002 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1003 - 1004 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1005 - 1006 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1007 - 1008 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1009 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1010 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1011 - 1012 - 1013 -=== 3.3.6 Set Digital pulse count value === 1014 - 1015 - 1016 -Feature: Set the pulse count value. 1017 - 1018 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1019 - 1020 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1021 - 1022 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1023 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1024 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1025 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1026 - 1027 -(% style="color:blue" %)**Downlink Command: 0x09** 1028 - 1029 -Format: Command Code (0x09) followed by 5 bytes. 1030 - 1031 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1032 - 1033 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1034 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1035 - 1036 - 1037 -=== 3.3.7 Set Workmode === 1038 - 1039 - 1040 -Feature: Switch working mode. 1041 - 1042 -(% style="color:blue" %)**AT Command: AT+MOD** 1043 - 1044 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1045 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1046 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1047 -OK 1048 -))) 1049 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1050 -OK 1051 -Attention:Take effect after ATZ 1052 -))) 1053 - 1054 -(% style="color:blue" %)**Downlink Command: 0x0A** 1055 - 1056 -Format: Command Code (0x0A) followed by 1 bytes. 1057 - 1058 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1059 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1060 - 1061 - 1062 1062 = 4. Battery & Power Consumption = 1063 1063 1064 1064 ... ... @@ -1071,25 +1071,24 @@ 1071 1071 1072 1072 1073 1073 (% class="wikigeneratedid" %) 1074 - **User can change firmware SN50v3-LB to:**890 +User can change firmware SN50v3-LB to: 1075 1075 1076 1076 * Change Frequency band/ region. 1077 1077 * Update with new features. 1078 1078 * Fix bugs. 1079 1079 1080 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1081 1081 1082 -**Methods to Update Firmware:** 1083 1083 899 +Methods to Update Firmware: 900 + 1084 1084 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1085 1085 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1086 1086 1087 - 1088 1088 = 6. FAQ = 1089 1089 1090 1090 == 6.1 Where can i find source code of SN50v3-LB? == 1091 1091 1092 - 1093 1093 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1094 1094 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1095 1095 ... ... @@ -1117,10 +1117,8 @@ 1117 1117 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1118 1118 * (% style="color:red" %)**NH**(%%): No Hole 1119 1119 1120 - 1121 1121 = 8. Packing Info = 1122 1122 1123 - 1124 1124 (% style="color:#037691" %)**Package Includes**: 1125 1125 1126 1126 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1132,10 +1132,8 @@ 1132 1132 * Package Size / pcs : cm 1133 1133 * Weight / pcs : g 1134 1134 1135 - 1136 1136 = 9. Support = 1137 1137 1138 1138 1139 1139 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1140 - 1141 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content