Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -30,7 +30,6 @@ 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,7 +41,6 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 47 ... ... @@ -79,7 +79,6 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -107,7 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -126,7 +126,7 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-20230 610162852-1.png||height="466" width="802"]]125 +[[image:image-20230513102034-2.png]] 130 130 131 131 132 132 == 1.8 Mechanical == ... ... @@ -139,7 +139,7 @@ 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -== 1.9Hole Option ==138 +== Hole Option == 143 143 144 144 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -154,7 +154,7 @@ 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,7 +162,7 @@ 162 162 163 163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 164 164 165 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -211,7 +211,7 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 ... ... @@ -219,12 +219,12 @@ 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 ... ... @@ -280,22 +280,19 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 284 284 285 285 For example: 286 286 287 - (% style="color:blue" %)**AT+MOD=2 **(%%)283 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 288 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 +1. All modes share the same Payload Explanation from HERE. 290 +1. By default, the device will send an uplink message every 20 minutes. 293 293 294 -2. All modes share the same Payload Explanation from HERE. 295 - 296 -3. By default, the device will send an uplink message every 20 minutes. 297 - 298 - 299 299 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 300 300 301 301 ... ... @@ -302,8 +302,8 @@ 302 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 303 303 304 304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:90px" %)**1**|(% style="background-color:#d9e2f3;c0; width:130px" %)**2**|(% style="background-color:#d9e2f3;c0; width:80px" %)**2**306 -|Value|Bat|(% style="width:191px" %)((( 298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 +|**Value**|Bat|(% style="width:191px" %)((( 307 307 Temperature(DS18B20)(PC13) 308 308 )))|(% style="width:78px" %)((( 309 309 ADC(PA4) ... ... @@ -320,12 +320,11 @@ 320 320 321 321 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 322 322 323 - 324 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 325 325 326 326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:30px" %)**2**|(% style="background-color:#d9e2f3;c0; width:110px" %)**2**|(% style="background-color:#d9e2f3;c0; width:40px" %)**2**|(% style="background-color:#d9e2f3;c0; width:110px" %)**1**|(% style="background-color:#d9e2f3;c0; width:140px" %)**2**|(% style="background-color:#d9e2f3;c0; width:40px" %)**2**328 -|Value|BAT|(% style="width:196px" %)((( 319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2** 320 +|**Value**|BAT|(% style="width:196px" %)((( 329 329 Temperature(DS18B20)(PC13) 330 330 )))|(% style="width:87px" %)((( 331 331 ADC(PA4) ... ... @@ -333,30 +333,26 @@ 333 333 Digital in(PB15) & Digital Interrupt(PA8) 334 334 )))|(% style="width:208px" %)((( 335 335 Distance measure by:1) LIDAR-Lite V3HP 336 -Or 337 -2) Ultrasonic Sensor 328 +Or 2) Ultrasonic Sensor 338 338 )))|(% style="width:117px" %)Reserved 339 339 340 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 341 341 342 - 343 343 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 344 344 345 345 [[image:image-20230512173758-5.png||height="563" width="712"]] 346 346 347 - 348 348 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 349 349 350 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 351 351 352 352 [[image:image-20230512173903-6.png||height="596" width="715"]] 353 353 354 - 355 355 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 356 356 357 357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:120px" %)**2**|(% style="background-color:#d9e2f3;c0; width:80px" %)**2**359 -|Value|BAT|(% style="width:183px" %)((( 346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2** 347 +|**Value**|BAT|(% style="width:183px" %)((( 360 360 Temperature(DS18B20)(PC13) 361 361 )))|(% style="width:173px" %)((( 362 362 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -370,17 +370,15 @@ 370 370 371 371 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 372 372 373 - 374 374 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 375 375 376 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 377 378 378 [[image:image-20230512180609-7.png||height="555" width="802"]] 379 379 380 - 381 381 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 382 382 383 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 384 384 385 385 [[image:image-20230513105207-4.png||height="469" width="802"]] 386 386 ... ... @@ -387,14 +387,13 @@ 387 387 388 388 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 389 389 390 - 391 391 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 392 392 393 393 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 394 394 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 395 395 **Size(bytes)** 396 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1397 -|Value|(% style="width:68px" %)((( 381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 382 +|**Value**|(% style="width:68px" %)((( 398 398 ADC1(PA4) 399 399 )))|(% style="width:75px" %)((( 400 400 ADC2(PA5) ... ... @@ -417,8 +417,8 @@ 417 417 This mode has total 11 bytes. As shown below: 418 418 419 419 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 420 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**421 -|Value|BAT|(% style="width:186px" %)((( 405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2** 406 +|**Value**|BAT|(% style="width:186px" %)((( 422 422 Temperature1(DS18B20)(PC13) 423 423 )))|(% style="width:82px" %)((( 424 424 ADC(PA4) ... ... @@ -429,29 +429,24 @@ 429 429 430 430 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 431 431 432 - 433 433 [[image:image-20230513134006-1.png||height="559" width="736"]] 434 434 435 435 436 436 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 437 437 438 - 439 439 [[image:image-20230512164658-2.png||height="532" width="729"]] 440 440 441 441 Each HX711 need to be calibrated before used. User need to do below two steps: 442 442 443 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 445 445 1. ((( 446 446 Weight has 4 bytes, the unit is g. 447 - 448 - 449 - 450 450 ))) 451 451 452 452 For example: 453 453 454 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**434 +**AT+GETSENSORVALUE =0** 455 455 456 456 Response: Weight is 401 g 457 457 ... ... @@ -461,21 +461,21 @@ 461 461 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 462 462 **Size(bytes)** 463 463 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 464 -|Value|BAT|(% style="width:193px" %)((( 465 -Temperature(DS18B20)(PC13) 444 +|**Value**|BAT|(% style="width:193px" %)((( 445 +Temperature(DS18B20) 446 +(PC13) 466 466 )))|(% style="width:85px" %)((( 467 467 ADC(PA4) 468 468 )))|(% style="width:186px" %)((( 469 -Digital in(PB15) & Digital Interrupt(PA8) 450 +Digital in(PB15) & 451 +Digital Interrupt(PA8) 470 470 )))|(% style="width:100px" %)Weight 471 471 472 472 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 473 473 474 474 475 - 476 476 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 477 477 478 - 479 479 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 480 480 481 481 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -482,12 +482,11 @@ 482 482 483 483 [[image:image-20230512181814-9.png||height="543" width="697"]] 484 484 465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 485 485 486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 - 488 488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**490 -|Value|BAT|(% style="width:256px" %)((( 468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 +|**Value**|BAT|(% style="width:256px" %)((( 491 491 Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:108px" %)((( 493 493 ADC(PA4) ... ... @@ -502,12 +502,11 @@ 502 502 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 505 - 506 506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 507 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 508 508 **Size(bytes)** 509 509 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 -|Value|BAT|(% style="width:188px" %)((( 488 +|**Value**|BAT|(% style="width:188px" %)((( 511 511 Temperature(DS18B20) 512 512 (PC13) 513 513 )))|(% style="width:83px" %)((( ... ... @@ -518,15 +518,13 @@ 518 518 519 519 [[image:image-20230513111203-7.png||height="324" width="975"]] 520 520 521 - 522 522 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 523 523 524 - 525 525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 526 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 527 527 **Size(bytes)** 528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2529 -|Value|BAT|(% style="width:207px" %)((( 504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 505 +|**Value**|BAT|(% style="width:207px" %)((( 530 530 Temperature(DS18B20) 531 531 (PC13) 532 532 )))|(% style="width:94px" %)((( ... ... @@ -544,23 +544,22 @@ 544 544 545 545 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 546 546 547 - 548 548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 549 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 550 550 **Size(bytes)** 551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4552 -|Value|BAT|((( 553 -Temperature 554 -( DS18B20)(PC13)526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 527 +|**Value**|BAT|((( 528 +Temperature1(DS18B20) 529 +(PC13) 555 555 )))|((( 556 -Temperature2 557 -( DS18B20)(PB9)531 +Temperature2(DS18B20) 532 +(PB9) 558 558 )))|((( 559 559 Digital Interrupt 560 560 (PB15) 561 561 )))|(% style="width:193px" %)((( 562 -Temperature3 563 -( DS18B20)(PB8)537 +Temperature3(DS18B20) 538 +(PB8) 564 564 )))|(% style="width:78px" %)((( 565 565 Count1(PA8) 566 566 )))|(% style="width:78px" %)((( ... ... @@ -571,23 +571,22 @@ 571 571 572 572 (% style="color:blue" %)**The newly added AT command is issued correspondingly:** 573 573 574 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**549 +**~ AT+INTMOD1** ** PA8** pin: Corresponding downlink: **06 00 00 xx** 575 575 576 - (% style="color:#037691" %)** AT+INTMOD2(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**551 +**~ AT+INTMOD2** **PA4** pin: Corresponding downlink:** 06 00 01 xx** 577 577 578 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**553 +**~ AT+INTMOD3** **PB15** pin: Corresponding downlink: ** 06 00 02 xx** 579 579 555 +**AT+SETCNT=aa,bb** 580 580 581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 - 583 583 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 584 584 585 585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 562 + 588 588 === 2.3.3 Decode payload === 589 589 590 - 591 591 While using TTN V3 network, you can add the payload format to decode the payload. 592 592 593 593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -594,14 +594,13 @@ 594 594 595 595 The payload decoder function for TTN V3 are here: 596 596 597 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]571 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 598 598 599 599 600 600 ==== 2.3.3.1 Battery Info ==== 601 601 576 +Check the battery voltage for SN50v3. 602 602 603 -Check the battery voltage for SN50v3-LB. 604 - 605 605 Ex1: 0x0B45 = 2885mV 606 606 607 607 Ex2: 0x0B49 = 2889mV ... ... @@ -609,18 +609,16 @@ 609 609 610 610 ==== 2.3.3.2 Temperature (DS18B20) ==== 611 611 612 - 613 613 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 614 614 615 -More DS18B20 can check the [[3 DS18B20 mode>> ||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]587 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 616 616 617 - (% style="color:blue" %)**Connection:**589 +**Connection:** 618 618 619 619 [[image:image-20230512180718-8.png||height="538" width="647"]] 620 620 593 +**Example**: 621 621 622 -(% style="color:blue" %)**Example**: 623 - 624 624 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 625 625 626 626 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -630,7 +630,6 @@ 630 630 631 631 ==== 2.3.3.3 Digital Input ==== 632 632 633 - 634 634 The digital input for pin PB15, 635 635 636 636 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -640,14 +640,11 @@ 640 640 ((( 641 641 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 642 642 643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 - 645 - 613 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 646 646 ))) 647 647 648 648 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 649 649 650 - 651 651 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 652 652 653 653 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -654,20 +654,17 @@ 654 654 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 656 656 624 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 657 657 658 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 659 659 660 - 661 661 ==== 2.3.3.5 Digital Interrupt ==== 662 662 629 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 663 663 664 - Digital Interruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.631 +(% style="color:blue" %)**~ Interrupt connection method:** 665 665 666 -(% style="color:blue" %)** Interrupt connection method:** 667 - 668 668 [[image:image-20230513105351-5.png||height="147" width="485"]] 669 669 670 - 671 671 (% style="color:blue" %)**Example to use with door sensor :** 672 672 673 673 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -674,23 +674,22 @@ 674 674 675 675 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 676 676 677 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.641 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 678 678 643 +(% style="color:blue" %)**~ Below is the installation example:** 679 679 680 - (%style="color:blue"%)**Belowisthe installationexample:**645 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 681 681 682 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 - 684 684 * ((( 685 -One pin to SN50v3 -LB's PA8 pin648 +One pin to SN50_v3's PA8 pin 686 686 ))) 687 687 * ((( 688 -The other pin to SN50v3 -LB's VDD pin651 +The other pin to SN50_v3's VDD pin 689 689 ))) 690 690 691 691 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 692 692 693 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.656 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 694 694 695 695 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 696 696 ... ... @@ -702,33 +702,30 @@ 702 702 703 703 The command is: 704 704 705 -(% style="color:blue" %)**AT+INTMOD1=1 668 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 706 706 707 707 Below shows some screen captures in TTN V3: 708 708 709 709 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 710 710 674 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 711 711 712 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 - 714 714 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 715 715 716 716 717 717 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 718 718 719 - 720 720 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 721 721 722 722 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 723 723 724 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**685 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 725 725 726 - 727 727 Below is the connection to SHT20/ SHT31. The connection is as below: 728 728 689 + 729 729 [[image:image-20230513103633-3.png||height="448" width="716"]] 730 730 731 - 732 732 The device will be able to get the I2C sensor data now and upload to IoT Server. 733 733 734 734 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -746,26 +746,23 @@ 746 746 747 747 ==== 2.3.3.7 Distance Reading ==== 748 748 709 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 749 749 750 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 751 751 752 - 753 753 ==== 2.3.3.8 Ultrasonic Sensor ==== 754 754 755 - 756 756 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 757 757 758 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.716 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 759 759 760 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%)ultrasonic sensor.718 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 761 761 762 762 The picture below shows the connection: 763 763 764 764 [[image:image-20230512173903-6.png||height="596" width="715"]] 765 765 724 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 766 766 767 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 - 769 769 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 770 770 771 771 **Example:** ... ... @@ -773,17 +773,16 @@ 773 773 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 774 774 775 775 733 + 776 776 ==== 2.3.3.9 Battery Output - BAT pin ==== 777 777 736 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 778 778 779 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 780 780 781 - 782 782 ==== 2.3.3.10 +5V Output ==== 783 783 741 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 784 784 785 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 - 787 787 The 5V output time can be controlled by AT Command. 788 788 789 789 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -790,23 +790,21 @@ 790 790 791 791 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 792 792 793 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.749 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 794 794 795 795 752 + 796 796 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 797 797 798 - 799 799 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 800 800 801 801 [[image:image-20230512172447-4.png||height="416" width="712"]] 802 802 803 - 804 804 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 805 805 806 806 807 807 ==== 2.3.3.12 Working MOD ==== 808 808 809 - 810 810 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 811 811 812 812 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -824,6 +824,7 @@ 824 824 * 8: MOD9 825 825 826 826 781 + 827 827 == 2.4 Payload Decoder file == 828 828 829 829 ... ... @@ -834,6 +834,7 @@ 834 834 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 835 835 836 836 792 + 837 837 == 2.5 Frequency Plans == 838 838 839 839 ... ... @@ -853,7 +853,6 @@ 853 853 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 854 854 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 855 855 856 - 857 857 == 3.2 General Commands == 858 858 859 859 ... ... @@ -870,12 +870,11 @@ 870 870 == 3.3 Commands special design for SN50v3-LB == 871 871 872 872 873 -These commands only valid for S N50v3-LB, as below:828 +These commands only valid for S31x-LB, as below: 874 874 875 875 876 876 === 3.3.1 Set Transmit Interval Time === 877 877 878 - 879 879 Feature: Change LoRaWAN End Node Transmit Interval. 880 880 881 881 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -902,25 +902,24 @@ 902 902 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 903 903 904 904 859 + 905 905 === 3.3.2 Get Device Status === 906 906 907 - 908 908 Send a LoRaWAN downlink to ask the device to send its status. 909 909 910 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **864 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 911 911 912 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.866 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 913 913 914 914 915 915 === 3.3.3 Set Interrupt Mode === 916 916 917 - 918 918 Feature, Set Interrupt mode for GPIO_EXIT. 919 919 920 920 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 921 921 922 922 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 923 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**876 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 924 924 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 925 925 0 926 926 OK ... ... @@ -935,6 +935,7 @@ 935 935 )))|(% style="width:157px" %)OK 936 936 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 937 937 Set Transmit Interval 891 + 938 938 trigger by rising edge. 939 939 )))|(% style="width:157px" %)OK 940 940 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -951,9 +951,9 @@ 951 951 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 952 952 953 953 908 + 954 954 === 3.3.4 Set Power Output Duration === 955 955 956 - 957 957 Control the output duration 5V . Before each sampling, device will 958 958 959 959 ~1. first enable the power output to external sensor, ... ... @@ -965,7 +965,7 @@ 965 965 (% style="color:blue" %)**AT Command: AT+5VT** 966 966 967 967 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 968 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**922 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 969 969 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 970 970 500(default) 971 971 OK ... ... @@ -984,15 +984,15 @@ 984 984 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 985 985 986 986 941 + 987 987 === 3.3.5 Set Weighing parameters === 988 988 989 - 990 990 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 991 991 992 992 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 993 993 994 994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 995 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**949 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 996 996 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 997 997 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 998 998 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1010,9 +1010,9 @@ 1010 1010 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1011 1011 1012 1012 967 + 1013 1013 === 3.3.6 Set Digital pulse count value === 1014 1014 1015 - 1016 1016 Feature: Set the pulse count value. 1017 1017 1018 1018 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1020,7 +1020,7 @@ 1020 1020 (% style="color:blue" %)**AT Command: AT+SETCNT** 1021 1021 1022 1022 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1023 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**977 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1024 1024 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1025 1025 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1026 1026 ... ... @@ -1034,15 +1034,15 @@ 1034 1034 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1035 1035 1036 1036 991 + 1037 1037 === 3.3.7 Set Workmode === 1038 1038 1039 - 1040 1040 Feature: Switch working mode. 1041 1041 1042 1042 (% style="color:blue" %)**AT Command: AT+MOD** 1043 1043 1044 1044 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1045 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**999 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1046 1046 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1047 1047 OK 1048 1048 ))) ... ... @@ -1059,6 +1059,7 @@ 1059 1059 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1060 1060 1061 1061 1016 + 1062 1062 = 4. Battery & Power Consumption = 1063 1063 1064 1064 ... ... @@ -1071,29 +1071,27 @@ 1071 1071 1072 1072 1073 1073 (% class="wikigeneratedid" %) 1074 - **User can change firmware SN50v3-LB to:**1029 +User can change firmware SN50v3-LB to: 1075 1075 1076 1076 * Change Frequency band/ region. 1077 1077 * Update with new features. 1078 1078 * Fix bugs. 1079 1079 1080 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1035 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1081 1081 1082 -**Methods to Update Firmware:** 1083 1083 1038 +Methods to Update Firmware: 1039 + 1084 1084 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1085 1085 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1086 1086 1087 - 1088 1088 = 6. FAQ = 1089 1089 1090 1090 == 6.1 Where can i find source code of SN50v3-LB? == 1091 1091 1092 - 1093 1093 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1094 1094 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1095 1095 1096 - 1097 1097 = 7. Order Info = 1098 1098 1099 1099 ... ... @@ -1117,10 +1117,8 @@ 1117 1117 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1118 1118 * (% style="color:red" %)**NH**(%%): No Hole 1119 1119 1120 - 1121 1121 = 8. Packing Info = 1122 1122 1123 - 1124 1124 (% style="color:#037691" %)**Package Includes**: 1125 1125 1126 1126 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1132,7 +1132,6 @@ 1132 1132 * Package Size / pcs : cm 1133 1133 * Weight / pcs : g 1134 1134 1135 - 1136 1136 = 9. Support = 1137 1137 1138 1138
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content