<
From version < 47.1 >
edited by Saxer Lin
on 2023/06/10 16:29
To version < 11.2 >
edited by Edwin Chen
on 2023/05/11 23:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,10 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 -
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,10 +79,8 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 -
86 86  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87 87  
88 88  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,7 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230610162852-1.png||height="466" width="802"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -139,9 +139,8 @@
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -== 1.9 Hole Option ==
138 +== Hole Option ==
143 143  
144 -
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 146  
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -219,12 +219,12 @@
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 220  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
... ... @@ -277,350 +277,41 @@
277 277  Ex2: 0x0B49 = 2889mV
278 278  
279 279  
280 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
275 +=== 2.3.2  Sensor Data. FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +Sensor Data is uplink via FPORT=2
284 284  
285 -For example:
286 -
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 -
289 -
290 -(% style="color:red" %) **Important Notice:**
291 -
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
293 -
294 -2. All modes share the same Payload Explanation from HERE.
295 -
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 -
301 -
302 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 -
304 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 -|Value|Bat|(% style="width:191px" %)(((
307 -Temperature(DS18B20)(PC13)
308 -)))|(% style="width:78px" %)(((
309 -ADC(PA4)
310 -)))|(% style="width:216px" %)(((
311 -Digital in(PB15)&Digital Interrupt(PA8)
312 -)))|(% style="width:308px" %)(((
313 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 -)))|(% style="width:154px" %)(((
315 -Humidity(SHT20 or SHT31)
316 -)))
317 -
318 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319 -
320 -
321 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 -
323 -
324 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 -
326 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 -|Value|BAT|(% style="width:196px" %)(((
329 -Temperature(DS18B20)(PC13)
330 -)))|(% style="width:87px" %)(((
331 -ADC(PA4)
332 -)))|(% style="width:189px" %)(((
333 -Digital in(PB15) & Digital Interrupt(PA8)
334 -)))|(% style="width:208px" %)(((
335 -Distance measure by:1) LIDAR-Lite V3HP
336 -Or
337 -2) Ultrasonic Sensor
338 -)))|(% style="width:117px" %)Reserved
339 -
340 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341 -
342 -
343 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344 -
345 -[[image:image-20230512173758-5.png||height="563" width="712"]]
346 -
347 -
348 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349 -
350 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351 -
352 -[[image:image-20230512173903-6.png||height="596" width="715"]]
353 -
354 -
355 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356 -
357 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 -|Value|BAT|(% style="width:183px" %)(((
360 -Temperature(DS18B20)(PC13)
361 -)))|(% style="width:173px" %)(((
362 -Digital in(PB15) & Digital Interrupt(PA8)
363 -)))|(% style="width:84px" %)(((
364 -ADC(PA4)
365 -)))|(% style="width:323px" %)(((
366 -Distance measure by:1)TF-Mini plus LiDAR
367 -Or 
368 -2) TF-Luna LiDAR
369 -)))|(% style="width:188px" %)Distance signal  strength
370 -
371 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
372 -
373 -
374 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
375 -
376 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
377 -
378 -[[image:image-20230512180609-7.png||height="555" width="802"]]
379 -
380 -
381 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
382 -
383 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
384 -
385 -[[image:image-20230513105207-4.png||height="469" width="802"]]
386 -
387 -
388 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
389 -
390 -
391 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
392 -
393 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
394 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
280 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
281 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
395 395  **Size(bytes)**
396 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
397 -|Value|(% style="width:68px" %)(((
398 -ADC1(PA4)
399 -)))|(% style="width:75px" %)(((
400 -ADC2(PA5)
401 -)))|(((
402 -ADC3(PA8)
403 -)))|(((
404 -Digital Interrupt(PB15)
405 -)))|(% style="width:304px" %)(((
406 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 -)))|(% style="width:163px" %)(((
408 -Humidity(SHT20 or SHT31)
409 -)))|(% style="width:53px" %)Bat
410 -
411 -[[image:image-20230513110214-6.png]]
412 -
413 -
414 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
415 -
416 -
417 -This mode has total 11 bytes. As shown below:
418 -
419 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
420 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
421 -|Value|BAT|(% style="width:186px" %)(((
422 -Temperature1(DS18B20)(PC13)
423 -)))|(% style="width:82px" %)(((
424 -ADC(PA4)
425 -)))|(% style="width:210px" %)(((
426 -Digital in(PB15) & Digital Interrupt(PA8) 
427 -)))|(% style="width:191px" %)Temperature2(DS18B20)
428 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
429 -
430 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
431 -
432 -
433 -[[image:image-20230513134006-1.png||height="559" width="736"]]
434 -
435 -
436 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
437 -
438 -
439 -[[image:image-20230512164658-2.png||height="532" width="729"]]
440 -
441 -Each HX711 need to be calibrated before used. User need to do below two steps:
442 -
443 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
445 -1. (((
446 -Weight has 4 bytes, the unit is g.
447 -
448 -
449 -
283 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
284 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
285 +[[Battery>>||anchor="HBattery:"]]
286 +)))|(% style="width:130px" %)(((
287 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
288 +)))|(% style="width:91px" %)(((
289 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
290 +)))|(% style="width:103px" %)(((
291 +[[Temperature>>||anchor="HTemperature:"]]
292 +)))|(% style="width:80px" %)(((
293 +[[Humidity>>||anchor="HHumidity:"]]
450 450  )))
451 451  
452 -For example:
296 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
453 453  
454 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
298 +Sensor Battery Level.
455 455  
456 -Response:  Weight is 401 g
457 -
458 -Check the response of this command and adjust the value to match the real value for thing.
459 -
460 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
461 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
462 -**Size(bytes)**
463 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
464 -|Value|BAT|(% style="width:193px" %)(((
465 -Temperature(DS18B20)(PC13)
466 -)))|(% style="width:85px" %)(((
467 -ADC(PA4)
468 -)))|(% style="width:186px" %)(((
469 -Digital in(PB15) & Digital Interrupt(PA8)
470 -)))|(% style="width:100px" %)Weight
471 -
472 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
473 -
474 -
475 -
476 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 -
478 -
479 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480 -
481 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
482 -
483 -[[image:image-20230512181814-9.png||height="543" width="697"]]
484 -
485 -
486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 -
488 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 -|Value|BAT|(% style="width:256px" %)(((
491 -Temperature(DS18B20)(PC13)
492 -)))|(% style="width:108px" %)(((
493 -ADC(PA4)
494 -)))|(% style="width:126px" %)(((
495 -Digital in(PB15)
496 -)))|(% style="width:145px" %)(((
497 -Count(PA8)
498 -)))
499 -
500 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 -
502 -
503 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 -
505 -
506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 -**Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 -|Value|BAT|(% style="width:188px" %)(((
511 -Temperature(DS18B20)
512 -(PC13)
513 -)))|(% style="width:83px" %)(((
514 -ADC(PA5)
515 -)))|(% style="width:184px" %)(((
516 -Digital Interrupt1(PA8)
517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
518 -
519 -[[image:image-20230513111203-7.png||height="324" width="975"]]
520 -
521 -
522 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 -
524 -
525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 -**Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 -|Value|BAT|(% style="width:207px" %)(((
530 -Temperature(DS18B20)
531 -(PC13)
532 -)))|(% style="width:94px" %)(((
533 -ADC1(PA4)
534 -)))|(% style="width:198px" %)(((
535 -Digital Interrupt(PB15)
536 -)))|(% style="width:84px" %)(((
537 -ADC2(PA5)
538 -)))|(% style="width:82px" %)(((
539 -ADC3(PA8)
540 -)))
541 -
542 -[[image:image-20230513111231-8.png||height="335" width="900"]]
543 -
544 -
545 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 -
547 -
548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 -**Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 -|Value|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
555 -)))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
558 -)))|(((
559 -Digital Interrupt
560 -(PB15)
561 -)))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
564 -)))|(% style="width:78px" %)(((
565 -Count1(PA8)
566 -)))|(% style="width:78px" %)(((
567 -Count2(PA4)
568 -)))
569 -
570 -[[image:image-20230513111255-9.png||height="341" width="899"]]
571 -
572 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
573 -
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
575 -
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
577 -
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
579 -
580 -
581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
582 -
583 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
584 -
585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 -
587 -
588 -=== 2.3.3  ​Decode payload ===
589 -
590 -
591 -While using TTN V3 network, you can add the payload format to decode the payload.
592 -
593 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
594 -
595 -The payload decoder function for TTN V3 are here:
596 -
597 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 -
599 -
600 -==== 2.3.3.1 Battery Info ====
601 -
602 -
603 -Check the battery voltage for SN50v3-LB.
604 -
605 605  Ex1: 0x0B45 = 2885mV
606 606  
607 607  Ex2: 0x0B49 = 2889mV
608 608  
609 609  
610 -==== 2.3.3.2  Temperature (DS18B20) ====
611 611  
306 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
612 612  
613 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
308 +**Example**:
614 614  
615 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
616 -
617 -(% style="color:blue" %)**Connection:**
618 -
619 -[[image:image-20230512180718-8.png||height="538" width="647"]]
620 -
621 -
622 -(% style="color:blue" %)**Example**:
623 -
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625 625  
626 626  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -628,232 +628,200 @@
628 628  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
629 629  
630 630  
631 -==== 2.3.3.3 Digital Input ====
317 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
632 632  
633 633  
634 -The digital input for pin PB15,
320 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
635 635  
636 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
637 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
638 638  
639 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 -(((
641 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
323 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
642 642  
643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 644  
645 -
646 -)))
326 +**Example:**
647 647  
648 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
328 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
649 649  
330 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
650 650  
651 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
332 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
652 652  
653 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
334 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
654 654  
655 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
337 +== 2.4 Payload Decoder file ==
657 657  
658 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 659  
340 +In TTN, use can add a custom payload so it shows friendly reading
660 660  
661 -==== 2.3.3.5 Digital Interrupt ====
342 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
662 662  
344 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
663 663  
664 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
665 665  
666 -(% style="color:blue" %)** Interrupt connection method:**
347 +== 2.5 Datalog Feature ==
667 667  
668 -[[image:image-20230513105351-5.png||height="147" width="485"]]
669 669  
350 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
670 670  
671 -(% style="color:blue" %)**Example to use with door sensor :**
672 672  
673 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
353 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
674 674  
675 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
676 676  
677 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
356 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
678 678  
358 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
359 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
679 679  
680 -(% style="color:blue" %)**Below is the installation example:**
361 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
681 681  
682 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
363 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
683 683  
684 -* (((
685 -One pin to SN50v3-LB's PA8 pin
686 -)))
687 -* (((
688 -The other pin to SN50v3-LB's VDD pin
689 -)))
365 +=== 2.5.2 Unix TimeStamp ===
690 690  
691 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
692 692  
693 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
368 +S31x-LB uses Unix TimeStamp format based on
694 694  
695 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
370 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
696 696  
697 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
372 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
698 698  
699 -The above photos shows the two parts of the magnetic switch fitted to a door.
374 +Below is the converter example
700 700  
701 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
376 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
702 702  
703 -The command is:
378 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
704 704  
705 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706 706  
707 -Below shows some screen captures in TTN V3:
381 +=== 2.5.3 Set Device Time ===
708 708  
709 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
710 710  
384 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
711 711  
712 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
386 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
713 713  
714 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
388 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
715 715  
716 716  
717 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
391 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
718 718  
719 719  
720 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
394 +The Datalog uplinks will use below payload format.
721 721  
722 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
396 +**Retrieval data payload:**
723 723  
724 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
398 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
399 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
400 +**Size(bytes)**
401 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
402 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
403 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
404 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
725 725  
406 +**Poll message flag & Ext:**
726 726  
727 -Below is the connection to SHT20/ SHT31. The connection is as below:
408 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
728 728  
729 -[[image:image-20230513103633-3.png||height="448" width="716"]]
410 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
730 730  
412 +**Poll Message Flag**: 1: This message is a poll message reply.
731 731  
732 -The device will be able to get the I2C sensor data now and upload to IoT Server.
414 +* Poll Message Flag is set to 1.
733 733  
734 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
416 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
735 735  
736 -Convert the read byte to decimal and divide it by ten.
418 +For example, in US915 band, the max payload for different DR is:
737 737  
738 -**Example:**
420 +**a) DR0:** max is 11 bytes so one entry of data
739 739  
740 -Temperature Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
422 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
741 741  
742 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
424 +**c) DR2:** total payload includes 11 entries of data
743 743  
744 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
426 +**d) DR3: **total payload includes 22 entries of data.
745 745  
428 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
746 746  
747 -==== 2.3.3.7  ​Distance Reading ====
748 748  
749 -
750 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
751 -
752 -
753 -==== 2.3.3.8 Ultrasonic Sensor ====
754 -
755 -
756 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
757 -
758 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 -
760 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
761 -
762 -The picture below shows the connection:
763 -
764 -[[image:image-20230512173903-6.png||height="596" width="715"]]
765 -
766 -
767 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
768 -
769 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
770 -
771 771  **Example:**
772 772  
773 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
433 +If S31x-LB has below data inside Flash:
774 774  
435 +[[image:1682646494051-944.png]]
775 775  
776 -==== 2.3.3.9  Battery Output - BAT pin ====
437 +If user sends below downlink command: 3160065F9760066DA705
777 777  
439 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
778 778  
779 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
441 + Stop time: 60066DA7= time 21/1/19 05:27:03
780 780  
781 781  
782 -==== 2.3.3.1 +5V Output ====
444 +**S31x-LB will uplink this payload.**
783 783  
446 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
784 784  
785 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
448 +(((
449 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
450 +)))
786 786  
787 -The 5V output time can be controlled by AT Command.
452 +(((
453 +Where the first 11 bytes is for the first entry:
454 +)))
788 788  
789 -(% style="color:blue" %)**AT+5VT=1000**
456 +(((
457 +7FFF089801464160065F97
458 +)))
790 790  
791 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
460 +(((
461 +**Ext sensor data**=0x7FFF/100=327.67
462 +)))
792 792  
793 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
464 +(((
465 +**Temp**=0x088E/100=22.00
466 +)))
794 794  
468 +(((
469 +**Hum**=0x014B/10=32.6
470 +)))
795 795  
796 -==== 2.3.3.11  BH1750 Illumination Sensor ====
472 +(((
473 +**poll message flag & Ext**=0x41,means reply data,Ext=1
474 +)))
797 797  
476 +(((
477 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
478 +)))
798 798  
799 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
800 800  
801 -[[image:image-20230512172447-4.png||height="416" width="712"]]
481 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
802 802  
483 +== 2.6 Temperature Alarm Feature ==
803 803  
804 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
805 805  
486 +S31x-LB work flow with Alarm feature.
806 806  
807 -==== 2.3.3.12  Working MOD ====
808 808  
489 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
809 809  
810 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
811 811  
812 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
492 +== 2.7 Frequency Plans ==
813 813  
814 -Case 7^^th^^ Byte >> 2 & 0x1f:
815 815  
816 -* 0: MOD1
817 -* 1: MOD2
818 -* 2: MOD3
819 -* 3: MOD4
820 -* 4: MOD5
821 -* 5: MOD6
822 -* 6: MOD7
823 -* 7: MOD8
824 -* 8: MOD9
495 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
825 825  
826 -
827 -== 2.4 Payload Decoder file ==
828 -
829 -
830 -In TTN, use can add a custom payload so it shows friendly reading
831 -
832 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
833 -
834 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
835 -
836 -
837 -== 2.5 Frequency Plans ==
838 -
839 -
840 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
841 -
842 842  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
843 843  
844 844  
845 -= 3. Configure SN50v3-LB =
500 += 3. Configure S31x-LB =
846 846  
847 847  == 3.1 Configure Methods ==
848 848  
849 849  
850 -SN50v3-LB supports below configure method:
505 +S31x-LB supports below configure method:
851 851  
852 852  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
853 853  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
854 854  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
855 855  
856 -
857 857  == 3.2 General Commands ==
858 858  
859 859  
... ... @@ -867,10 +867,10 @@
867 867  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
868 868  
869 869  
870 -== 3.3 Commands special design for SN50v3-LB ==
524 +== 3.3 Commands special design for S31x-LB ==
871 871  
872 872  
873 -These commands only valid for SN50v3-LB, as below:
527 +These commands only valid for S31x-LB, as below:
874 874  
875 875  
876 876  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -901,163 +901,117 @@
901 901  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 902  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903 903  
904 -
905 905  === 3.3.2 Get Device Status ===
906 906  
907 907  
908 -Send a LoRaWAN downlink to ask the device to send its status.
561 +Send a LoRaWAN downlink to ask device send Alarm settings.
909 909  
910 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
563 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
911 911  
912 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
565 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
913 913  
914 914  
915 -=== 3.3.3 Set Interrupt Mode ===
568 +=== 3.3.3 Set Temperature Alarm Threshold ===
916 916  
570 +* (% style="color:blue" %)**AT Command:**
917 917  
918 -Feature, Set Interrupt mode for GPIO_EXIT.
572 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
919 919  
920 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
574 +* When min=0, and max≠0, Alarm higher than max
575 +* When min≠0, and max=0, Alarm lower than min
576 +* When min≠0 and max≠0, Alarm higher than max or lower than min
921 921  
922 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
923 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
924 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
925 -0
926 -OK
927 -the mode is 0 =Disable Interrupt
928 -)))
929 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
930 -Set Transmit Interval
931 -0. (Disable Interrupt),
932 -~1. (Trigger by rising and falling edge)
933 -2. (Trigger by falling edge)
934 -3. (Trigger by rising edge)
935 -)))|(% style="width:157px" %)OK
936 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
937 -Set Transmit Interval
938 -trigger by rising edge.
939 -)))|(% style="width:157px" %)OK
940 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
578 +Example:
941 941  
942 -(% style="color:blue" %)**Downlink Command: 0x06**
580 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
943 943  
944 -Format: Command Code (0x06) followed by 3 bytes.
582 +* (% style="color:blue" %)**Downlink Payload:**
945 945  
946 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
584 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
947 947  
948 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
949 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
950 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
951 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
586 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
952 952  
953 953  
954 -=== 3.3.4 Set Power Output Duration ===
589 +=== 3.3.4 Set Humidity Alarm Threshold ===
955 955  
591 +* (% style="color:blue" %)**AT Command:**
956 956  
957 -Control the output duration 5V . Before each sampling, device will
593 +(% style="color:#037691" %)**AT+SHHUM=min,max**
958 958  
959 -~1. first enable the power output to external sensor,
595 +* When min=0, and max≠0, Alarm higher than max
596 +* When min≠0, and max=0, Alarm lower than min
597 +* When min≠0 and max≠0, Alarm higher than max or lower than min
960 960  
961 -2. keep it on as per duration, read sensor value and construct uplink payload
599 +Example:
962 962  
963 -3. final, close the power output.
601 + AT+SHHUM=70, ~/~/ Alarm when humidity lower than 70%.
964 964  
965 -(% style="color:blue" %)**AT Command: AT+5VT**
603 +* (% style="color:blue" %)**Downlink Payload:**
966 966  
967 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
968 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
969 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
970 -500(default)
971 -OK
972 -)))
973 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
974 -Close after a delay of 1000 milliseconds.
975 -)))|(% style="width:157px" %)OK
605 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
976 976  
977 -(% style="color:blue" %)**Downlink Command: 0x07**
607 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
978 978  
979 -Format: Command Code (0x07) followed by 2 bytes.
980 980  
981 -The first and second bytes are the time to turn on.
610 +=== 3.3.5 Set Alarm Interval ===
982 982  
983 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
984 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
612 +The shortest time of two Alarm packet. (unit: min)
985 985  
614 +* (% style="color:blue" %)**AT Command:**
986 986  
987 -=== 3.3.5 Set Weighing parameters ===
616 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
988 988  
618 +* (% style="color:blue" %)**Downlink Payload:**
989 989  
990 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
620 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
991 991  
992 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
993 993  
994 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
996 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
997 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
998 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
623 +=== 3.3.6 Get Alarm settings ===
999 999  
1000 -(% style="color:blue" %)**Downlink Command: 0x08**
1001 1001  
1002 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
626 +Send a LoRaWAN downlink to ask device send Alarm settings.
1003 1003  
1004 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
628 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1005 1005  
1006 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
630 +**Example:**
1007 1007  
1008 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1009 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1010 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
632 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1011 1011  
1012 1012  
1013 -=== 3.3.6 Set Digital pulse count value ===
635 +**Explain:**
1014 1014  
637 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1015 1015  
1016 -Feature: Set the pulse count value.
639 +=== 3.3.7 Set Interrupt Mode ===
1017 1017  
1018 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1019 1019  
1020 -(% style="color:blue" %)**AT Command: AT+SETCNT**
642 +Feature, Set Interrupt mode for GPIO_EXIT.
1021 1021  
1022 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1024 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1025 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
644 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1026 1026  
1027 -(% style="color:blue" %)**Downlink Command: 0x09**
1028 -
1029 -Format: Command Code (0x09) followed by 5 bytes.
1030 -
1031 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1032 -
1033 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1034 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1035 -
1036 -
1037 -=== 3.3.7 Set Workmode ===
1038 -
1039 -
1040 -Feature: Switch working mode.
1041 -
1042 -(% style="color:blue" %)**AT Command: AT+MOD**
1043 -
1044 1044  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1045 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1046 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
647 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
648 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
649 +0
1047 1047  OK
651 +the mode is 0 =Disable Interrupt
1048 1048  )))
1049 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1050 -OK
1051 -Attention:Take effect after ATZ
1052 -)))
653 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
654 +Set Transmit Interval
655 +0. (Disable Interrupt),
656 +~1. (Trigger by rising and falling edge)
657 +2. (Trigger by falling edge)
658 +3. (Trigger by rising edge)
659 +)))|(% style="width:157px" %)OK
1053 1053  
1054 -(% style="color:blue" %)**Downlink Command: 0x0A**
661 +(% style="color:blue" %)**Downlink Command: 0x06**
1055 1055  
1056 -Format: Command Code (0x0A) followed by 1 bytes.
663 +Format: Command Code (0x06) followed by 3 bytes.
1057 1057  
1058 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1059 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
665 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1060 1060  
667 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
668 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1061 1061  
1062 1062  = 4. Battery & Power Consumption =
1063 1063  
... ... @@ -1071,29 +1071,24 @@
1071 1071  
1072 1072  
1073 1073  (% class="wikigeneratedid" %)
1074 -**User can change firmware SN50v3-LB to:**
682 +User can change firmware SN50v3-LB to:
1075 1075  
1076 1076  * Change Frequency band/ region.
1077 1077  * Update with new features.
1078 1078  * Fix bugs.
1079 1079  
1080 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
688 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1081 1081  
1082 -**Methods to Update Firmware:**
1083 1083  
691 +Methods to Update Firmware:
692 +
1084 1084  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 1085  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1086 1086  
1087 -
1088 1088  = 6. FAQ =
1089 1089  
1090 -== 6.1 Where can i find source code of SN50v3-LB? ==
1091 1091  
1092 1092  
1093 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1094 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1095 -
1096 -
1097 1097  = 7. Order Info =
1098 1098  
1099 1099  
... ... @@ -1117,10 +1117,8 @@
1117 1117  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1118 1118  * (% style="color:red" %)**NH**(%%): No Hole
1119 1119  
1120 -
1121 1121  = 8. ​Packing Info =
1122 1122  
1123 -
1124 1124  (% style="color:#037691" %)**Package Includes**:
1125 1125  
1126 1126  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1132,10 +1132,8 @@
1132 1132  * Package Size / pcs : cm
1133 1133  * Weight / pcs : g
1134 1134  
1135 -
1136 1136  = 9. Support =
1137 1137  
1138 1138  
1139 1139  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1140 -
1141 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
740 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0