<
From version < 45.4 >
edited by Xiaoling
on 2023/05/27 11:50
To version < 87.35 >
edited by Xiaoling
on 2024/01/24 15:22
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,16 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
52 52  * Operating Temperature: -40 ~~ 85°C
53 53  
54 54  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,11 +93,10 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
97 97  
98 -
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,23 +127,28 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230513102034-2.png]]
130 +[[image:image-20230610163213-1.png||height="404" width="699"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 +=== 1.8.1 for LB version ===
135 135  
136 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 +
140 140  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
141 141  
143 +=== 1.8.2 for LS version ===
142 142  
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 +
147 +
143 143  == 1.9 Hole Option ==
144 144  
145 145  
146 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
148 148  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
149 149  
... ... @@ -150,12 +150,12 @@
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
151 151  
152 152  
153 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
154 154  
155 155  == 2.1 How it works ==
156 156  
157 157  
158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
159 159  
160 160  
161 161  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -166,9 +166,9 @@
166 166  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
167 167  
168 168  
169 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
170 170  
171 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
172 172  
173 173  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
174 174  
... ... @@ -197,10 +197,10 @@
197 197  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
198 198  
199 199  
200 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
201 201  
202 202  
203 -Press the button for 5 seconds to activate the SN50v3-LB.
208 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
204 204  
205 205  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
206 206  
... ... @@ -212,13 +212,13 @@
212 212  === 2.3.1 Device Status, FPORT~=5 ===
213 213  
214 214  
215 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
216 216  
217 217  The Payload format is as below.
218 218  
219 219  
220 220  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
222 222  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
223 223  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
224 224  
... ... @@ -225,39 +225,39 @@
225 225  Example parse in TTNv3
226 226  
227 227  
228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
229 229  
230 230  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
231 231  
232 232  (% style="color:#037691" %)**Frequency Band**:
233 233  
234 -*0x01: EU868
239 +0x01: EU868
235 235  
236 -*0x02: US915
241 +0x02: US915
237 237  
238 -*0x03: IN865
243 +0x03: IN865
239 239  
240 -*0x04: AU915
245 +0x04: AU915
241 241  
242 -*0x05: KZ865
247 +0x05: KZ865
243 243  
244 -*0x06: RU864
249 +0x06: RU864
245 245  
246 -*0x07: AS923
251 +0x07: AS923
247 247  
248 -*0x08: AS923-1
253 +0x08: AS923-1
249 249  
250 -*0x09: AS923-2
255 +0x09: AS923-2
251 251  
252 -*0x0a: AS923-3
257 +0x0a: AS923-3
253 253  
254 -*0x0b: CN470
259 +0x0b: CN470
255 255  
256 -*0x0c: EU433
261 +0x0c: EU433
257 257  
258 -*0x0d: KR920
263 +0x0d: KR920
259 259  
260 -*0x0e: MA869
265 +0x0e: MA869
261 261  
262 262  
263 263  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -281,7 +281,7 @@
281 281  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
282 282  
283 283  
284 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
285 285  
286 286  For example:
287 287  
... ... @@ -290,7 +290,7 @@
290 290  
291 291  (% style="color:red" %) **Important Notice:**
292 292  
293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
294 294  
295 295  2. All modes share the same Payload Explanation from HERE.
296 296  
... ... @@ -302,8 +302,8 @@
302 302  
303 303  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304 304  
305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
310 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
307 307  |Value|Bat|(% style="width:191px" %)(((
308 308  Temperature(DS18B20)(PC13)
309 309  )))|(% style="width:78px" %)(((
... ... @@ -324,8 +324,8 @@
324 324  
325 325  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 326  
327 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
332 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
329 329  |Value|BAT|(% style="width:196px" %)(((
330 330  Temperature(DS18B20)(PC13)
331 331  )))|(% style="width:87px" %)(((
... ... @@ -333,9 +333,8 @@
333 333  )))|(% style="width:189px" %)(((
334 334  Digital in(PB15) & Digital Interrupt(PA8)
335 335  )))|(% style="width:208px" %)(((
336 -Distance measure by:1) LIDAR-Lite V3HP
337 -Or
338 -2) Ultrasonic Sensor
341 +Distance measure by: 1) LIDAR-Lite V3HP
342 +Or 2) Ultrasonic Sensor
339 339  )))|(% style="width:117px" %)Reserved
340 340  
341 341  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -355,9 +355,9 @@
355 355  
356 356  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
357 357  
358 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
359 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
360 -|**Value**|BAT|(% style="width:183px" %)(((
362 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
364 +|Value|BAT|(% style="width:183px" %)(((
361 361  Temperature(DS18B20)(PC13)
362 362  )))|(% style="width:173px" %)(((
363 363  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -365,8 +365,7 @@
365 365  ADC(PA4)
366 366  )))|(% style="width:323px" %)(((
367 367  Distance measure by:1)TF-Mini plus LiDAR
368 -Or 
369 -2) TF-Luna LiDAR
372 +Or 2) TF-Luna LiDAR
370 370  )))|(% style="width:188px" %)Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -383,7 +383,7 @@
383 383  
384 384  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385 385  
386 -[[image:image-20230513105207-4.png||height="469" width="802"]]
389 +[[image:image-20230610170047-1.png||height="452" width="799"]]
387 387  
388 388  
389 389  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -391,10 +391,10 @@
391 391  
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
398 398  |Value|(% style="width:68px" %)(((
399 399  ADC1(PA4)
400 400  )))|(% style="width:75px" %)(((
... ... @@ -418,7 +418,7 @@
418 418  This mode has total 11 bytes. As shown below:
419 419  
420 420  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
422 422  |Value|BAT|(% style="width:186px" %)(((
423 423  Temperature1(DS18B20)(PC13)
424 424  )))|(% style="width:82px" %)(((
... ... @@ -459,9 +459,9 @@
459 459  Check the response of this command and adjust the value to match the real value for thing.
460 460  
461 461  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
463 463  **Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
465 465  |Value|BAT|(% style="width:193px" %)(((
466 466  Temperature(DS18B20)(PC13)
467 467  )))|(% style="width:85px" %)(((
... ... @@ -473,7 +473,6 @@
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 -
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -487,7 +487,7 @@
487 487  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488 488  
489 489  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
491 491  |Value|BAT|(% style="width:256px" %)(((
492 492  Temperature(DS18B20)(PC13)
493 493  )))|(% style="width:108px" %)(((
... ... @@ -505,9 +505,9 @@
505 505  
506 506  
507 507  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
508 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
509 509  **Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 511  |Value|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
513 513  (PC13)
... ... @@ -524,9 +524,9 @@
524 524  
525 525  
526 526  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
530 530  |Value|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
532 532  (PC13)
... ... @@ -547,9 +547,9 @@
547 547  
548 548  
549 549  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
553 553  |Value|BAT|(((
554 554  Temperature
555 555  (DS18B20)(PC13)
... ... @@ -586,6 +586,108 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
592 +
593 +
594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595 +
596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597 +
598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
599 +
600 +
601 +===== 2.3.2.10.a  Uplink, PWM input capture =====
602 +
603 +
604 +[[image:image-20230817172209-2.png||height="439" width="683"]]
605 +
606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
608 +|Value|Bat|(% style="width:191px" %)(((
609 +Temperature(DS18B20)(PC13)
610 +)))|(% style="width:78px" %)(((
611 +ADC(PA4)
612 +)))|(% style="width:135px" %)(((
613 +PWM_Setting
614 +&Digital Interrupt(PA8)
615 +)))|(% style="width:70px" %)(((
616 +Pulse period
617 +)))|(% style="width:89px" %)(((
618 +Duration of high level
619 +)))
620 +
621 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
622 +
623 +
624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
625 +
626 +**Frequency:**
627 +
628 +(% class="MsoNormal" %)
629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
630 +
631 +(% class="MsoNormal" %)
632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
633 +
634 +
635 +(% class="MsoNormal" %)
636 +**Duty cycle:**
637 +
638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639 +
640 +[[image:image-20230818092200-1.png||height="344" width="627"]]
641 +
642 +
643 +===== 2.3.2.10.b  Uplink, PWM output =====
644 +
645 +
646 +[[image:image-20230817172209-2.png||height="439" width="683"]]
647 +
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
649 +
650 +a is the time delay of the output, the unit is ms.
651 +
652 +b is the output frequency, the unit is HZ.
653 +
654 +c is the duty cycle of the output, the unit is %.
655 +
656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
657 +
658 +aa is the time delay of the output, the unit is ms.
659 +
660 +bb is the output frequency, the unit is HZ.
661 +
662 +cc is the duty cycle of the output, the unit is %.
663 +
664 +
665 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
666 +
667 +The oscilloscope displays as follows:
668 +
669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
670 +
671 +
672 +===== 2.3.2.10.c  Downlink, PWM output =====
673 +
674 +
675 +[[image:image-20230817173800-3.png||height="412" width="685"]]
676 +
677 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
678 +
679 + xx xx xx is the output frequency, the unit is HZ.
680 +
681 + yy is the duty cycle of the output, the unit is %.
682 +
683 + zz zz is the time delay of the output, the unit is ms.
684 +
685 +
686 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
687 +
688 +The oscilloscope displays as follows:
689 +
690 +[[image:image-20230817173858-5.png||height="634" width="843"]]
691 +
692 +
589 589  === 2.3.3  ​Decode payload ===
590 590  
591 591  
... ... @@ -595,13 +595,13 @@
595 595  
596 596  The payload decoder function for TTN V3 are here:
597 597  
598 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
702 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 599  
600 600  
601 601  ==== 2.3.3.1 Battery Info ====
602 602  
603 603  
604 -Check the battery voltage for SN50v3-LB.
708 +Check the battery voltage for SN50v3-LB/LS.
605 605  
606 606  Ex1: 0x0B45 = 2885mV
607 607  
... ... @@ -649,9 +649,9 @@
649 649  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
650 650  
651 651  
652 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
756 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
653 653  
654 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
758 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
655 655  
656 656  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
657 657  
... ... @@ -659,10 +659,16 @@
659 659  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
661 661  
766 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
767 +
768 +[[image:image-20230811113449-1.png||height="370" width="608"]]
769 +
770 +
771 +
662 662  ==== 2.3.3.5 Digital Interrupt ====
663 663  
664 664  
665 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
666 666  
667 667  (% style="color:blue" %)** Interrupt connection method:**
668 668  
... ... @@ -675,18 +675,18 @@
675 675  
676 676  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
677 677  
678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
679 679  
680 680  
681 681  (% style="color:blue" %)**Below is the installation example:**
682 682  
683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
684 684  
685 685  * (((
686 -One pin to SN50v3-LB's PA8 pin
796 +One pin to SN50v3-LB/LS's PA8 pin
687 687  )))
688 688  * (((
689 -The other pin to SN50v3-LB's VDD pin
799 +The other pin to SN50v3-LB/LS's VDD pin
690 690  )))
691 691  
692 692  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -722,12 +722,12 @@
722 722  
723 723  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
724 724  
725 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
726 726  
727 727  
728 728  Below is the connection to SHT20/ SHT31. The connection is as below:
729 729  
730 -[[image:image-20230513103633-3.png||height="448" width="716"]]
840 +[[image:image-20230610170152-2.png||height="501" width="846"]]
731 731  
732 732  
733 733  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -756,7 +756,7 @@
756 756  
757 757  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
758 758  
759 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 760  
761 761  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
762 762  
... ... @@ -765,7 +765,7 @@
765 765  [[image:image-20230512173903-6.png||height="596" width="715"]]
766 766  
767 767  
768 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 769  
770 770  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
771 771  
... ... @@ -777,13 +777,13 @@
777 777  ==== 2.3.3.9  Battery Output - BAT pin ====
778 778  
779 779  
780 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
781 781  
782 782  
783 783  ==== 2.3.3.10  +5V Output ====
784 784  
785 785  
786 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
787 787  
788 788  The 5V output time can be controlled by AT Command.
789 789  
... ... @@ -805,9 +805,37 @@
805 805  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
806 806  
807 807  
808 -==== 2.3.3.12  Working MOD ====
918 +==== 2.3.3.12  PWM MOD ====
809 809  
810 810  
921 +* (((
922 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
923 +)))
924 +* (((
925 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
926 +)))
927 +
928 + [[image:image-20230817183249-3.png||height="320" width="417"]]
929 +
930 +* (((
931 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
932 +)))
933 +* (((
934 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
935 +)))
936 +* (((
937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
938 +
939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
940 +
941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
942 +
943 +b) If the output duration is more than 30 seconds, better to use external power source. 
944 +)))
945 +
946 +==== 2.3.3.13  Working MOD ====
947 +
948 +
811 811  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812 812  
813 813  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -823,6 +823,7 @@
823 823  * 6: MOD7
824 824  * 7: MOD8
825 825  * 8: MOD9
964 +* 9: MOD10
826 826  
827 827  == 2.4 Payload Decoder file ==
828 828  
... ... @@ -837,17 +837,17 @@
837 837  == 2.5 Frequency Plans ==
838 838  
839 839  
840 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
841 841  
842 842  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
843 843  
844 844  
845 -= 3. Configure SN50v3-LB =
984 += 3. Configure SN50v3-LB/LS =
846 846  
847 847  == 3.1 Configure Methods ==
848 848  
849 849  
850 -SN50v3-LB supports below configure method:
989 +SN50v3-LB/LS supports below configure method:
851 851  
852 852  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
853 853  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -866,10 +866,10 @@
866 866  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
867 867  
868 868  
869 -== 3.3 Commands special design for SN50v3-LB ==
1008 +== 3.3 Commands special design for SN50v3-LB/LS ==
870 870  
871 871  
872 -These commands only valid for SN50v3-LB, as below:
1011 +These commands only valid for SN50v3-LB/LS, as below:
873 873  
874 874  
875 875  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -880,7 +880,7 @@
880 880  (% style="color:blue" %)**AT Command: AT+TDC**
881 881  
882 882  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
883 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
884 884  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
885 885  30000
886 886  OK
... ... @@ -915,10 +915,10 @@
915 915  
916 916  Feature, Set Interrupt mode for GPIO_EXIT.
917 917  
918 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
919 919  
920 920  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
922 922  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
923 923  0
924 924  OK
... ... @@ -962,7 +962,7 @@
962 962  (% style="color:blue" %)**AT Command: AT+5VT**
963 963  
964 964  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
965 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
966 966  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
967 967  500(default)
968 968  OK
... ... @@ -988,9 +988,9 @@
988 988  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
989 989  
990 990  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
992 992  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
993 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
994 994  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
995 995  
996 996  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1015,7 +1015,7 @@
1015 1015  (% style="color:blue" %)**AT Command: AT+SETCNT**
1016 1016  
1017 1017  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1018 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1019 1019  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1020 1020  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1021 1021  
... ... @@ -1036,7 +1036,7 @@
1036 1036  (% style="color:blue" %)**AT Command: AT+MOD**
1037 1037  
1038 1038  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1039 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1040 1040  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1041 1041  OK
1042 1042  )))
... ... @@ -1052,11 +1052,97 @@
1052 1052  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1053 1053  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1054 1054  
1055 -= 4. Battery & Power Consumption =
1194 +=== 3.3.8 PWM setting ===
1056 1056  
1057 1057  
1058 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1197 +Feature: Set the time acquisition unit for PWM input capture.
1059 1059  
1199 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1200 +
1201 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1204 +0(default)
1205 +OK
1206 +)))
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 +OK
1209 +
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 +
1213 +(% style="color:blue" %)**Downlink Command: 0x0C**
1214 +
1215 +Format: Command Code (0x0C) followed by 1 bytes.
1216 +
1217 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 +
1220 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1221 +
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 +
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +OK
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1231 +OK
1232 +
1233 +)))
1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1236 +
1237 +
1238 +)))|(% style="width:137px" %)(((
1239 +OK
1240 +)))
1241 +
1242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1244 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1245 +AT+PWMOUT=a,b,c
1246 +
1247 +
1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1249 +Set PWM output time, output frequency and output duty cycle.
1250 +
1251 +(((
1252 +
1253 +)))
1254 +
1255 +(((
1256 +
1257 +)))
1258 +)))|(% style="width:242px" %)(((
1259 +a: Output time (unit: seconds)
1260 +The value ranges from 0 to 65535.
1261 +When a=65535, PWM will always output.
1262 +)))
1263 +|(% style="width:242px" %)(((
1264 +b: Output frequency (unit: HZ)
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +c: Output duty cycle (unit: %)
1268 +The value ranges from 0 to 100.
1269 +)))
1270 +
1271 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1272 +
1273 +Format: Command Code (0x0B01) followed by 6 bytes.
1274 +
1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1276 +
1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1279 +
1280 += 4. Battery & Power Cons =
1281 +
1282 +
1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1284 +
1060 1060  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1061 1061  
1062 1062  
... ... @@ -1064,31 +1064,47 @@
1064 1064  
1065 1065  
1066 1066  (% class="wikigeneratedid" %)
1067 -**User can change firmware SN50v3-LB to:**
1292 +**User can change firmware SN50v3-LB/LS to:**
1068 1068  
1069 1069  * Change Frequency band/ region.
1070 1070  * Update with new features.
1071 1071  * Fix bugs.
1072 1072  
1073 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1298 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1074 1074  
1075 1075  **Methods to Update Firmware:**
1076 1076  
1077 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1078 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1302 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1303 +* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1079 1079  
1080 1080  = 6. FAQ =
1081 1081  
1082 -== 6.1 Where can i find source code of SN50v3-LB? ==
1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1083 1083  
1084 1084  
1085 1085  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1086 1086  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1087 1087  
1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1314 +
1315 +
1316 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1317 +
1318 +
1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1320 +
1321 +
1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1323 +
1324 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1325 +
1326 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1327 +
1328 +
1088 1088  = 7. Order Info =
1089 1089  
1090 1090  
1091 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1092 1092  
1093 1093  (% style="color:red" %)**XX**(%%): The default frequency band
1094 1094  
... ... @@ -1113,7 +1113,7 @@
1113 1113  
1114 1114  (% style="color:#037691" %)**Package Includes**:
1115 1115  
1116 -* SN50v3-LB LoRaWAN Generic Node
1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1117 1117  
1118 1118  (% style="color:#037691" %)**Dimension and weight**:
1119 1119  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0