Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -109,6 +109,8 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 + 113 + 112 112 == 1.6 BLE connection == 113 113 114 114 ... ... @@ -140,7 +140,7 @@ 140 140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 141 141 142 142 143 -== 1.9Hole Option ==145 +== Hole Option == 144 144 145 145 146 146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -155,7 +155,7 @@ 155 155 == 2.1 How it works == 156 156 157 157 158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 159 159 160 160 161 161 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -163,7 +163,7 @@ 163 163 164 164 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 165 165 166 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 167 167 168 168 169 169 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -212,7 +212,7 @@ 212 212 === 2.3.1 Device Status, FPORT~=5 === 213 213 214 214 215 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 216 216 217 217 The Payload format is as below. 218 218 ... ... @@ -220,12 +220,12 @@ 220 220 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 221 221 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 222 222 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 223 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 224 224 225 225 Example parse in TTNv3 226 226 227 227 228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 229 229 230 230 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 231 231 ... ... @@ -281,22 +281,21 @@ 281 281 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 282 282 283 283 284 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 285 285 286 286 For example: 287 287 288 - (% style="color:blue" %)**AT+MOD=2 **(%%)290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 289 289 290 290 291 291 (% style="color:red" %) **Important Notice:** 292 292 293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 294 294 295 -2. All modes share the same Payload Explanation from HERE. 296 296 297 -3. By default, the device will send an uplink message every 20 minutes. 298 298 299 - 300 300 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 301 301 302 302 ... ... @@ -304,7 +304,7 @@ 304 304 305 305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 306 306 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 307 -|Value|Bat|(% style="width:191px" %)((( 308 +|**Value**|Bat|(% style="width:191px" %)((( 308 308 Temperature(DS18B20)(PC13) 309 309 )))|(% style="width:78px" %)((( 310 310 ADC(PA4) ... ... @@ -319,6 +319,7 @@ 319 319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 320 320 321 321 323 + 322 322 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 323 323 324 324 ... ... @@ -326,7 +326,7 @@ 326 326 327 327 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 328 328 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 329 -|Value|BAT|(% style="width:196px" %)((( 331 +|**Value**|BAT|(% style="width:196px" %)((( 330 330 Temperature(DS18B20)(PC13) 331 331 )))|(% style="width:87px" %)((( 332 332 ADC(PA4) ... ... @@ -348,7 +348,7 @@ 348 348 349 349 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 350 350 351 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 352 352 353 353 [[image:image-20230512173903-6.png||height="596" width="715"]] 354 354 ... ... @@ -374,7 +374,7 @@ 374 374 375 375 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 376 376 377 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 378 378 379 379 [[image:image-20230512180609-7.png||height="555" width="802"]] 380 380 ... ... @@ -381,7 +381,7 @@ 381 381 382 382 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 383 383 384 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 385 385 386 386 [[image:image-20230513105207-4.png||height="469" width="802"]] 387 387 ... ... @@ -395,7 +395,7 @@ 395 395 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 396 396 **Size(bytes)** 397 397 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 -|Value|(% style="width:68px" %)((( 400 +|**Value**|(% style="width:68px" %)((( 399 399 ADC1(PA4) 400 400 )))|(% style="width:75px" %)((( 401 401 ADC2(PA5) ... ... @@ -419,7 +419,7 @@ 419 419 420 420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 421 421 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 -|Value|BAT|(% style="width:186px" %)((( 424 +|**Value**|BAT|(% style="width:186px" %)((( 423 423 Temperature1(DS18B20)(PC13) 424 424 )))|(% style="width:82px" %)((( 425 425 ADC(PA4) ... ... @@ -430,10 +430,10 @@ 430 430 431 431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 432 432 433 - 434 434 [[image:image-20230513134006-1.png||height="559" width="736"]] 435 435 436 436 438 + 437 437 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 438 438 439 439 ... ... @@ -441,8 +441,8 @@ 441 441 442 442 Each HX711 need to be calibrated before used. User need to do below two steps: 443 443 444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 446 446 1. ((( 447 447 Weight has 4 bytes, the unit is g. 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 453 453 For example: 454 454 455 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**457 +**AT+GETSENSORVALUE =0** 456 456 457 457 Response: Weight is 401 g 458 458 ... ... @@ -462,7 +462,7 @@ 462 462 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 463 463 **Size(bytes)** 464 464 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 465 -|Value|BAT|(% style="width:193px" %)((( 467 +|**Value**|BAT|(% style="width:193px" %)((( 466 466 Temperature(DS18B20)(PC13) 467 467 )))|(% style="width:85px" %)((( 468 468 ADC(PA4) ... ... @@ -488,7 +488,7 @@ 488 488 489 489 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 490 490 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 491 -|Value|BAT|(% style="width:256px" %)((( 493 +|**Value**|BAT|(% style="width:256px" %)((( 492 492 Temperature(DS18B20)(PC13) 493 493 )))|(% style="width:108px" %)((( 494 494 ADC(PA4) ... ... @@ -501,6 +501,7 @@ 501 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 502 502 503 503 506 + 504 504 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 505 505 506 506 ... ... @@ -508,7 +508,7 @@ 508 508 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 509 509 **Size(bytes)** 510 510 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 511 -|Value|BAT|(% style="width:188px" %)((( 514 +|**Value**|BAT|(% style="width:188px" %)((( 512 512 Temperature(DS18B20) 513 513 (PC13) 514 514 )))|(% style="width:83px" %)((( ... ... @@ -527,7 +527,7 @@ 527 527 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 528 528 **Size(bytes)** 529 529 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 530 -|Value|BAT|(% style="width:207px" %)((( 533 +|**Value**|BAT|(% style="width:207px" %)((( 531 531 Temperature(DS18B20) 532 532 (PC13) 533 533 )))|(% style="width:94px" %)((( ... ... @@ -550,7 +550,7 @@ 550 550 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 551 551 **Size(bytes)** 552 552 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 553 -|Value|BAT|((( 556 +|**Value**|BAT|((( 554 554 Temperature 555 555 (DS18B20)(PC13) 556 556 )))|((( ... ... @@ -595,13 +595,13 @@ 595 595 596 596 The payload decoder function for TTN V3 are here: 597 597 598 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]601 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 599 599 600 600 601 601 ==== 2.3.3.1 Battery Info ==== 602 602 603 603 604 -Check the battery voltage for SN50v3 -LB.607 +Check the battery voltage for SN50v3. 605 605 606 606 Ex1: 0x0B45 = 2885mV 607 607 ... ... @@ -655,7 +655,6 @@ 655 655 656 656 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 657 657 658 - 659 659 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 660 660 661 661 ... ... @@ -662,7 +662,7 @@ 662 662 ==== 2.3.3.5 Digital Interrupt ==== 663 663 664 664 665 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 666 666 667 667 (% style="color:blue" %)** Interrupt connection method:** 668 668 ... ... @@ -675,18 +675,18 @@ 675 675 676 676 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 677 677 678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 679 679 680 680 681 681 (% style="color:blue" %)**Below is the installation example:** 682 682 683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 684 684 685 685 * ((( 686 -One pin to SN50v3 -LB's PA8 pin688 +One pin to SN50_v3's PA8 pin 687 687 ))) 688 688 * ((( 689 -The other pin to SN50v3 -LB's VDD pin691 +The other pin to SN50_v3's VDD pin 690 690 ))) 691 691 692 692 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -703,7 +703,7 @@ 703 703 704 704 The command is: 705 705 706 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 707 707 708 708 Below shows some screen captures in TTN V3: 709 709 ... ... @@ -710,7 +710,7 @@ 710 710 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 711 711 712 712 713 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 714 714 715 715 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 716 716 ... ... @@ -722,14 +722,13 @@ 722 722 723 723 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 724 724 725 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 726 726 727 - 728 728 Below is the connection to SHT20/ SHT31. The connection is as below: 729 729 731 + 730 730 [[image:image-20230513103633-3.png||height="448" width="716"]] 731 731 732 - 733 733 The device will be able to get the I2C sensor data now and upload to IoT Server. 734 734 735 735 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -756,7 +756,7 @@ 756 756 757 757 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 758 758 759 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 760 760 761 761 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 762 762 ... ... @@ -765,7 +765,7 @@ 765 765 [[image:image-20230512173903-6.png||height="596" width="715"]] 766 766 767 767 768 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 769 769 770 770 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 771 771 ... ... @@ -777,13 +777,13 @@ 777 777 ==== 2.3.3.9 Battery Output - BAT pin ==== 778 778 779 779 780 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 781 781 782 782 783 783 ==== 2.3.3.10 +5V Output ==== 784 784 785 785 786 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 787 787 788 788 The 5V output time can be controlled by AT Command. 789 789 ... ... @@ -791,7 +791,7 @@ 791 791 792 792 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 793 793 794 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 795 795 796 796 797 797 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -824,6 +824,7 @@ 824 824 * 7: MOD8 825 825 * 8: MOD9 826 826 828 + 827 827 == 2.4 Payload Decoder file == 828 828 829 829 ... ... @@ -853,6 +853,7 @@ 853 853 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 854 854 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 855 855 858 + 856 856 == 3.2 General Commands == 857 857 858 858 ... ... @@ -869,7 +869,7 @@ 869 869 == 3.3 Commands special design for SN50v3-LB == 870 870 871 871 872 -These commands only valid for S N50v3-LB, as below:875 +These commands only valid for S31x-LB, as below: 873 873 874 874 875 875 === 3.3.1 Set Transmit Interval Time === ... ... @@ -900,14 +900,15 @@ 900 900 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 901 901 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 902 902 906 + 903 903 === 3.3.2 Get Device Status === 904 904 905 905 906 906 Send a LoRaWAN downlink to ask the device to send its status. 907 907 908 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **912 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 909 909 910 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.914 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 911 911 912 912 913 913 === 3.3.3 Set Interrupt Mode === ... ... @@ -918,7 +918,7 @@ 918 918 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 919 919 920 920 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 921 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**925 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 922 922 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 923 923 0 924 924 OK ... ... @@ -948,6 +948,7 @@ 948 948 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 949 949 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 950 950 955 + 951 951 === 3.3.4 Set Power Output Duration === 952 952 953 953 ... ... @@ -962,7 +962,7 @@ 962 962 (% style="color:blue" %)**AT Command: AT+5VT** 963 963 964 964 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 965 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**970 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 966 966 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 967 967 500(default) 968 968 OK ... ... @@ -980,6 +980,7 @@ 980 980 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 981 981 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 982 982 988 + 983 983 === 3.3.5 Set Weighing parameters === 984 984 985 985 ... ... @@ -988,7 +988,7 @@ 988 988 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 989 989 990 990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 991 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**997 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 992 992 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 993 993 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 994 994 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1005,6 +1005,7 @@ 1005 1005 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1006 1006 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1007 1007 1014 + 1008 1008 === 3.3.6 Set Digital pulse count value === 1009 1009 1010 1010 ... ... @@ -1015,7 +1015,7 @@ 1015 1015 (% style="color:blue" %)**AT Command: AT+SETCNT** 1016 1016 1017 1017 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1018 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**1025 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1019 1019 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1020 1020 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1021 1021 ... ... @@ -1028,6 +1028,7 @@ 1028 1028 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1029 1029 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1030 1030 1038 + 1031 1031 === 3.3.7 Set Workmode === 1032 1032 1033 1033 ... ... @@ -1036,7 +1036,7 @@ 1036 1036 (% style="color:blue" %)**AT Command: AT+MOD** 1037 1037 1038 1038 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1039 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**1047 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1040 1040 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1041 1041 OK 1042 1042 ))) ... ... @@ -1052,6 +1052,7 @@ 1052 1052 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1053 1053 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1054 1054 1063 + 1055 1055 = 4. Battery & Power Consumption = 1056 1056 1057 1057 ... ... @@ -1064,19 +1064,21 @@ 1064 1064 1065 1065 1066 1066 (% class="wikigeneratedid" %) 1067 - **User can change firmware SN50v3-LB to:**1076 +User can change firmware SN50v3-LB to: 1068 1068 1069 1069 * Change Frequency band/ region. 1070 1070 * Update with new features. 1071 1071 * Fix bugs. 1072 1072 1073 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1082 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1074 1074 1075 -**Methods to Update Firmware:** 1076 1076 1085 +Methods to Update Firmware: 1086 + 1077 1077 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1078 1078 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1079 1079 1090 + 1080 1080 = 6. FAQ = 1081 1081 1082 1082 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1085,6 +1085,7 @@ 1085 1085 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1086 1086 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1087 1087 1099 + 1088 1088 = 7. Order Info = 1089 1089 1090 1090 ... ... @@ -1108,6 +1108,7 @@ 1108 1108 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1109 1109 * (% style="color:red" %)**NH**(%%): No Hole 1110 1110 1123 + 1111 1111 = 8. Packing Info = 1112 1112 1113 1113 ... ... @@ -1122,6 +1122,7 @@ 1122 1122 * Package Size / pcs : cm 1123 1123 * Weight / pcs : g 1124 1124 1138 + 1125 1125 = 9. Support = 1126 1126 1127 1127