<
From version < 45.4 >
edited by Xiaoling
on 2023/05/27 11:50
To version < 11.2 >
edited by Edwin Chen
on 2023/05/11 23:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,11 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 -
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 51  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,11 +80,8 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -127,7 +127,7 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
... ... @@ -140,9 +140,8 @@
140 140  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
141 141  
142 142  
143 -== 1.9 Hole Option ==
138 +== Hole Option ==
144 144  
145 -
146 146  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
148 148  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -155,7 +155,7 @@
155 155  == 2.1 How it works ==
156 156  
157 157  
158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
159 159  
160 160  
161 161  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -163,7 +163,7 @@
163 163  
164 164  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
165 165  
166 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
167 167  
168 168  
169 169  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -212,7 +212,7 @@
212 212  === 2.3.1 Device Status, FPORT~=5 ===
213 213  
214 214  
215 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
216 216  
217 217  The Payload format is as below.
218 218  
... ... @@ -220,12 +220,12 @@
220 220  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 221  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
222 222  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
223 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
224 224  
225 225  Example parse in TTNv3
226 226  
227 227  
228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
229 229  
230 230  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
231 231  
... ... @@ -278,350 +278,41 @@
278 278  Ex2: 0x0B49 = 2889mV
279 279  
280 280  
281 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
275 +=== 2.3.2  Sensor Data. FPORT~=2 ===
282 282  
283 283  
284 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +Sensor Data is uplink via FPORT=2
285 285  
286 -For example:
287 -
288 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
289 -
290 -
291 -(% style="color:red" %) **Important Notice:**
292 -
293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
294 -
295 -2. All modes share the same Payload Explanation from HERE.
296 -
297 -3. By default, the device will send an uplink message every 20 minutes.
298 -
299 -
300 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
301 -
302 -
303 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304 -
305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 -|Value|Bat|(% style="width:191px" %)(((
308 -Temperature(DS18B20)(PC13)
309 -)))|(% style="width:78px" %)(((
310 -ADC(PA4)
311 -)))|(% style="width:216px" %)(((
312 -Digital in(PB15)&Digital Interrupt(PA8)
313 -)))|(% style="width:308px" %)(((
314 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
315 -)))|(% style="width:154px" %)(((
316 -Humidity(SHT20 or SHT31)
317 -)))
318 -
319 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320 -
321 -
322 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323 -
324 -
325 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 -
327 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 -|Value|BAT|(% style="width:196px" %)(((
330 -Temperature(DS18B20)(PC13)
331 -)))|(% style="width:87px" %)(((
332 -ADC(PA4)
333 -)))|(% style="width:189px" %)(((
334 -Digital in(PB15) & Digital Interrupt(PA8)
335 -)))|(% style="width:208px" %)(((
336 -Distance measure by:1) LIDAR-Lite V3HP
337 -Or
338 -2) Ultrasonic Sensor
339 -)))|(% style="width:117px" %)Reserved
340 -
341 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
342 -
343 -
344 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
345 -
346 -[[image:image-20230512173758-5.png||height="563" width="712"]]
347 -
348 -
349 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
350 -
351 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
352 -
353 -[[image:image-20230512173903-6.png||height="596" width="715"]]
354 -
355 -
356 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
357 -
358 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
359 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
360 -|**Value**|BAT|(% style="width:183px" %)(((
361 -Temperature(DS18B20)(PC13)
362 -)))|(% style="width:173px" %)(((
363 -Digital in(PB15) & Digital Interrupt(PA8)
364 -)))|(% style="width:84px" %)(((
365 -ADC(PA4)
366 -)))|(% style="width:323px" %)(((
367 -Distance measure by:1)TF-Mini plus LiDAR
368 -Or 
369 -2) TF-Luna LiDAR
370 -)))|(% style="width:188px" %)Distance signal  strength
371 -
372 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 -
374 -
375 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376 -
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 -
379 -[[image:image-20230512180609-7.png||height="555" width="802"]]
380 -
381 -
382 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383 -
384 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385 -
386 -[[image:image-20230513105207-4.png||height="469" width="802"]]
387 -
388 -
389 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390 -
391 -
392 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 -
394 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
280 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
281 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 -|Value|(% style="width:68px" %)(((
399 -ADC1(PA4)
400 -)))|(% style="width:75px" %)(((
401 -ADC2(PA5)
402 -)))|(((
403 -ADC3(PA8)
404 -)))|(((
405 -Digital Interrupt(PB15)
406 -)))|(% style="width:304px" %)(((
407 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
408 -)))|(% style="width:163px" %)(((
409 -Humidity(SHT20 or SHT31)
410 -)))|(% style="width:53px" %)Bat
411 -
412 -[[image:image-20230513110214-6.png]]
413 -
414 -
415 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416 -
417 -
418 -This mode has total 11 bytes. As shown below:
419 -
420 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 -|Value|BAT|(% style="width:186px" %)(((
423 -Temperature1(DS18B20)(PC13)
424 -)))|(% style="width:82px" %)(((
425 -ADC(PA4)
426 -)))|(% style="width:210px" %)(((
427 -Digital in(PB15) & Digital Interrupt(PA8) 
428 -)))|(% style="width:191px" %)Temperature2(DS18B20)
429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
430 -
431 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432 -
433 -
434 -[[image:image-20230513134006-1.png||height="559" width="736"]]
435 -
436 -
437 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 -
439 -
440 -[[image:image-20230512164658-2.png||height="532" width="729"]]
441 -
442 -Each HX711 need to be calibrated before used. User need to do below two steps:
443 -
444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
446 -1. (((
447 -Weight has 4 bytes, the unit is g.
448 -
449 -
450 -
283 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
284 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
285 +[[Battery>>||anchor="HBattery:"]]
286 +)))|(% style="width:130px" %)(((
287 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
288 +)))|(% style="width:91px" %)(((
289 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
290 +)))|(% style="width:103px" %)(((
291 +[[Temperature>>||anchor="HTemperature:"]]
292 +)))|(% style="width:80px" %)(((
293 +[[Humidity>>||anchor="HHumidity:"]]
451 451  )))
452 452  
453 -For example:
296 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
454 454  
455 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
298 +Sensor Battery Level.
456 456  
457 -Response:  Weight is 401 g
458 -
459 -Check the response of this command and adjust the value to match the real value for thing.
460 -
461 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
463 -**Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 -|Value|BAT|(% style="width:193px" %)(((
466 -Temperature(DS18B20)(PC13)
467 -)))|(% style="width:85px" %)(((
468 -ADC(PA4)
469 -)))|(% style="width:186px" %)(((
470 -Digital in(PB15) & Digital Interrupt(PA8)
471 -)))|(% style="width:100px" %)Weight
472 -
473 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 -
475 -
476 -
477 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 -
479 -
480 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481 -
482 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483 -
484 -[[image:image-20230512181814-9.png||height="543" width="697"]]
485 -
486 -
487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488 -
489 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
491 -|Value|BAT|(% style="width:256px" %)(((
492 -Temperature(DS18B20)(PC13)
493 -)))|(% style="width:108px" %)(((
494 -ADC(PA4)
495 -)))|(% style="width:126px" %)(((
496 -Digital in(PB15)
497 -)))|(% style="width:145px" %)(((
498 -Count(PA8)
499 -)))
500 -
501 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502 -
503 -
504 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 -
506 -
507 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
508 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
509 -**Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 -|Value|BAT|(% style="width:188px" %)(((
512 -Temperature(DS18B20)
513 -(PC13)
514 -)))|(% style="width:83px" %)(((
515 -ADC(PA5)
516 -)))|(% style="width:184px" %)(((
517 -Digital Interrupt1(PA8)
518 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
519 -
520 -[[image:image-20230513111203-7.png||height="324" width="975"]]
521 -
522 -
523 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 -
525 -
526 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 -**Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 -|Value|BAT|(% style="width:207px" %)(((
531 -Temperature(DS18B20)
532 -(PC13)
533 -)))|(% style="width:94px" %)(((
534 -ADC1(PA4)
535 -)))|(% style="width:198px" %)(((
536 -Digital Interrupt(PB15)
537 -)))|(% style="width:84px" %)(((
538 -ADC2(PA5)
539 -)))|(% style="width:82px" %)(((
540 -ADC3(PA8)
541 -)))
542 -
543 -[[image:image-20230513111231-8.png||height="335" width="900"]]
544 -
545 -
546 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 -
548 -
549 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 -**Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 -|Value|BAT|(((
554 -Temperature
555 -(DS18B20)(PC13)
556 -)))|(((
557 -Temperature2
558 -(DS18B20)(PB9)
559 -)))|(((
560 -Digital Interrupt
561 -(PB15)
562 -)))|(% style="width:193px" %)(((
563 -Temperature3
564 -(DS18B20)(PB8)
565 -)))|(% style="width:78px" %)(((
566 -Count1(PA8)
567 -)))|(% style="width:78px" %)(((
568 -Count2(PA4)
569 -)))
570 -
571 -[[image:image-20230513111255-9.png||height="341" width="899"]]
572 -
573 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
574 -
575 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
576 -
577 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
578 -
579 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
580 -
581 -
582 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 -
584 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
585 -
586 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 -
588 -
589 -=== 2.3.3  ​Decode payload ===
590 -
591 -
592 -While using TTN V3 network, you can add the payload format to decode the payload.
593 -
594 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
595 -
596 -The payload decoder function for TTN V3 are here:
597 -
598 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 -
600 -
601 -==== 2.3.3.1 Battery Info ====
602 -
603 -
604 -Check the battery voltage for SN50v3-LB.
605 -
606 606  Ex1: 0x0B45 = 2885mV
607 607  
608 608  Ex2: 0x0B49 = 2889mV
609 609  
610 610  
611 -==== 2.3.3.2  Temperature (DS18B20) ====
612 612  
306 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
613 613  
614 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
308 +**Example**:
615 615  
616 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
617 -
618 -(% style="color:blue" %)**Connection:**
619 -
620 -[[image:image-20230512180718-8.png||height="538" width="647"]]
621 -
622 -
623 -(% style="color:blue" %)**Example**:
624 -
625 625  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
626 626  
627 627  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -629,225 +629,195 @@
629 629  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
630 630  
631 631  
632 -==== 2.3.3.3 Digital Input ====
317 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
633 633  
634 634  
635 -The digital input for pin PB15,
320 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
636 636  
637 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
638 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
639 639  
640 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
641 -(((
642 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
323 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
643 643  
644 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
645 645  
646 -
647 -)))
326 +**Example:**
648 648  
649 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
328 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
650 650  
330 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
651 651  
652 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
332 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
653 653  
654 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
334 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
655 655  
656 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
657 657  
337 +== 2.4 Payload Decoder file ==
658 658  
659 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
340 +In TTN, use can add a custom payload so it shows friendly reading
661 661  
662 -==== 2.3.3.5 Digital Interrupt ====
342 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
663 663  
344 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
664 664  
665 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
666 666  
667 -(% style="color:blue" %)** Interrupt connection method:**
347 +== 2.5 Datalog Feature ==
668 668  
669 -[[image:image-20230513105351-5.png||height="147" width="485"]]
670 670  
350 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
671 671  
672 -(% style="color:blue" %)**Example to use with door sensor :**
673 673  
674 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
353 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
675 675  
676 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
677 677  
678 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
356 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
679 679  
358 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
359 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
680 680  
681 -(% style="color:blue" %)**Below is the installation example:**
361 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
682 682  
683 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
363 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
684 684  
685 -* (((
686 -One pin to SN50v3-LB's PA8 pin
687 -)))
688 -* (((
689 -The other pin to SN50v3-LB's VDD pin
690 -)))
365 +=== 2.5.2 Unix TimeStamp ===
691 691  
692 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
693 693  
694 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
368 +S31x-LB uses Unix TimeStamp format based on
695 695  
696 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
370 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
697 697  
698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
372 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
699 699  
700 -The above photos shows the two parts of the magnetic switch fitted to a door.
374 +Below is the converter example
701 701  
702 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
376 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
703 703  
704 -The command is:
378 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
705 705  
706 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
707 707  
708 -Below shows some screen captures in TTN V3:
381 +=== 2.5.3 Set Device Time ===
709 709  
710 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
711 711  
384 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
712 712  
713 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
386 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
714 714  
715 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
388 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
716 716  
717 717  
718 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
391 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
719 719  
720 720  
721 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
394 +The Datalog uplinks will use below payload format.
722 722  
723 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
396 +**Retrieval data payload:**
724 724  
725 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
398 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
399 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
400 +**Size(bytes)**
401 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
402 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
403 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
404 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
726 726  
406 +**Poll message flag & Ext:**
727 727  
728 -Below is the connection to SHT20/ SHT31. The connection is as below:
408 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
729 729  
730 -[[image:image-20230513103633-3.png||height="448" width="716"]]
410 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
731 731  
412 +**Poll Message Flag**: 1: This message is a poll message reply.
732 732  
733 -The device will be able to get the I2C sensor data now and upload to IoT Server.
414 +* Poll Message Flag is set to 1.
734 734  
735 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
416 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
736 736  
737 -Convert the read byte to decimal and divide it by ten.
418 +For example, in US915 band, the max payload for different DR is:
738 738  
739 -**Example:**
420 +**a) DR0:** max is 11 bytes so one entry of data
740 740  
741 -Temperature Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
422 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
742 742  
743 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
424 +**c) DR2:** total payload includes 11 entries of data
744 744  
745 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
426 +**d) DR3: **total payload includes 22 entries of data.
746 746  
428 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
747 747  
748 -==== 2.3.3.7  ​Distance Reading ====
749 749  
750 -
751 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
752 -
753 -
754 -==== 2.3.3.8 Ultrasonic Sensor ====
755 -
756 -
757 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
758 -
759 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 -
761 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
762 -
763 -The picture below shows the connection:
764 -
765 -[[image:image-20230512173903-6.png||height="596" width="715"]]
766 -
767 -
768 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 -
770 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
771 -
772 772  **Example:**
773 773  
774 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
433 +If S31x-LB has below data inside Flash:
775 775  
435 +[[image:1682646494051-944.png]]
776 776  
777 -==== 2.3.3.9  Battery Output - BAT pin ====
437 +If user sends below downlink command: 3160065F9760066DA705
778 778  
439 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
779 779  
780 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
441 + Stop time: 60066DA7= time 21/1/19 05:27:03
781 781  
782 782  
783 -==== 2.3.3.1 +5V Output ====
444 +**S31x-LB will uplink this payload.**
784 784  
446 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
785 785  
786 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
448 +(((
449 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
450 +)))
787 787  
788 -The 5V output time can be controlled by AT Command.
452 +(((
453 +Where the first 11 bytes is for the first entry:
454 +)))
789 789  
790 -(% style="color:blue" %)**AT+5VT=1000**
456 +(((
457 +7FFF089801464160065F97
458 +)))
791 791  
792 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
460 +(((
461 +**Ext sensor data**=0x7FFF/100=327.67
462 +)))
793 793  
794 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
464 +(((
465 +**Temp**=0x088E/100=22.00
466 +)))
795 795  
468 +(((
469 +**Hum**=0x014B/10=32.6
470 +)))
796 796  
797 -==== 2.3.3.11  BH1750 Illumination Sensor ====
472 +(((
473 +**poll message flag & Ext**=0x41,means reply data,Ext=1
474 +)))
798 798  
476 +(((
477 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
478 +)))
799 799  
800 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
801 801  
802 -[[image:image-20230512172447-4.png||height="416" width="712"]]
481 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
803 803  
483 +== 2.6 Temperature Alarm Feature ==
804 804  
805 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
806 806  
486 +S31x-LB work flow with Alarm feature.
807 807  
808 -==== 2.3.3.12  Working MOD ====
809 809  
489 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
810 810  
811 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812 812  
813 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
492 +== 2.7 Frequency Plans ==
814 814  
815 -Case 7^^th^^ Byte >> 2 & 0x1f:
816 816  
817 -* 0: MOD1
818 -* 1: MOD2
819 -* 2: MOD3
820 -* 3: MOD4
821 -* 4: MOD5
822 -* 5: MOD6
823 -* 6: MOD7
824 -* 7: MOD8
825 -* 8: MOD9
495 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
826 826  
827 -== 2.4 Payload Decoder file ==
828 -
829 -
830 -In TTN, use can add a custom payload so it shows friendly reading
831 -
832 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
833 -
834 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
835 -
836 -
837 -== 2.5 Frequency Plans ==
838 -
839 -
840 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
841 -
842 842  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
843 843  
844 844  
845 -= 3. Configure SN50v3-LB =
500 += 3. Configure S31x-LB =
846 846  
847 847  == 3.1 Configure Methods ==
848 848  
849 849  
850 -SN50v3-LB supports below configure method:
505 +S31x-LB supports below configure method:
851 851  
852 852  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
853 853  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -866,10 +866,10 @@
866 866  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
867 867  
868 868  
869 -== 3.3 Commands special design for SN50v3-LB ==
524 +== 3.3 Commands special design for S31x-LB ==
870 870  
871 871  
872 -These commands only valid for SN50v3-LB, as below:
527 +These commands only valid for S31x-LB, as below:
873 873  
874 874  
875 875  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -903,155 +903,115 @@
903 903  === 3.3.2 Get Device Status ===
904 904  
905 905  
906 -Send a LoRaWAN downlink to ask the device to send its status.
561 +Send a LoRaWAN downlink to ask device send Alarm settings.
907 907  
908 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
563 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
909 909  
910 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
565 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
911 911  
912 912  
913 -=== 3.3.3 Set Interrupt Mode ===
568 +=== 3.3.3 Set Temperature Alarm Threshold ===
914 914  
570 +* (% style="color:blue" %)**AT Command:**
915 915  
916 -Feature, Set Interrupt mode for GPIO_EXIT.
572 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
917 917  
918 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
574 +* When min=0, and max≠0, Alarm higher than max
575 +* When min≠0, and max=0, Alarm lower than min
576 +* When min≠0 and max≠0, Alarm higher than max or lower than min
919 919  
920 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
922 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
923 -0
924 -OK
925 -the mode is 0 =Disable Interrupt
926 -)))
927 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
928 -Set Transmit Interval
929 -0. (Disable Interrupt),
930 -~1. (Trigger by rising and falling edge)
931 -2. (Trigger by falling edge)
932 -3. (Trigger by rising edge)
933 -)))|(% style="width:157px" %)OK
934 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
935 -Set Transmit Interval
936 -trigger by rising edge.
937 -)))|(% style="width:157px" %)OK
938 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
578 +Example:
939 939  
940 -(% style="color:blue" %)**Downlink Command: 0x06**
580 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
941 941  
942 -Format: Command Code (0x06) followed by 3 bytes.
582 +* (% style="color:blue" %)**Downlink Payload:**
943 943  
944 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
584 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
945 945  
946 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
947 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
948 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
949 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
586 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
950 950  
951 -=== 3.3.4 Set Power Output Duration ===
952 952  
589 +=== 3.3.4 Set Humidity Alarm Threshold ===
953 953  
954 -Control the output duration 5V . Before each sampling, device will
591 +* (% style="color:blue" %)**AT Command:**
955 955  
956 -~1. first enable the power output to external sensor,
593 +(% style="color:#037691" %)**AT+SHHUM=min,max**
957 957  
958 -2. keep it on as per duration, read sensor value and construct uplink payload
595 +* When min=0, and max≠0, Alarm higher than max
596 +* When min≠0, and max=0, Alarm lower than min
597 +* When min≠0 and max≠0, Alarm higher than max or lower than min
959 959  
960 -3. final, close the power output.
599 +Example:
961 961  
962 -(% style="color:blue" %)**AT Command: AT+5VT**
601 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
963 963  
964 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
965 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
966 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
967 -500(default)
968 -OK
969 -)))
970 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
971 -Close after a delay of 1000 milliseconds.
972 -)))|(% style="width:157px" %)OK
603 +* (% style="color:blue" %)**Downlink Payload:**
973 973  
974 -(% style="color:blue" %)**Downlink Command: 0x07**
605 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
975 975  
976 -Format: Command Code (0x07) followed by 2 bytes.
607 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
977 977  
978 -The first and second bytes are the time to turn on.
979 979  
980 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
981 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
610 +=== 3.3.5 Set Alarm Interval ===
982 982  
983 -=== 3.3.5 Set Weighing parameters ===
612 +The shortest time of two Alarm packet. (unit: min)
984 984  
614 +* (% style="color:blue" %)**AT Command:**
985 985  
986 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
616 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
987 987  
988 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
618 +* (% style="color:blue" %)**Downlink Payload:**
989 989  
990 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
992 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
993 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
994 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
620 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
995 995  
996 -(% style="color:blue" %)**Downlink Command: 0x08**
997 997  
998 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
623 +=== 3.3.6 Get Alarm settings ===
999 999  
1000 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1001 1001  
1002 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
626 +Send a LoRaWAN downlink to ask device send Alarm settings.
1003 1003  
1004 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1005 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1006 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
628 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1007 1007  
1008 -=== 3.3.6 Set Digital pulse count value ===
630 +**Example:**
1009 1009  
632 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1010 1010  
1011 -Feature: Set the pulse count value.
1012 1012  
1013 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
635 +**Explain:**
1014 1014  
1015 -(% style="color:blue" %)**AT Command: AT+SETCNT**
637 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1016 1016  
1017 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1018 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1019 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1020 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
639 +=== 3.3.7 Set Interrupt Mode ===
1021 1021  
1022 -(% style="color:blue" %)**Downlink Command: 0x09**
1023 1023  
1024 -Format: Command Code (0x09) followed by 5 bytes.
642 +Feature, Set Interrupt mode for GPIO_EXIT.
1025 1025  
1026 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
644 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1027 1027  
1028 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1029 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1030 -
1031 -=== 3.3.7 Set Workmode ===
1032 -
1033 -
1034 -Feature: Switch working mode.
1035 -
1036 -(% style="color:blue" %)**AT Command: AT+MOD**
1037 -
1038 1038  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1039 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1040 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
647 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
648 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
649 +0
1041 1041  OK
651 +the mode is 0 =Disable Interrupt
1042 1042  )))
1043 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1044 -OK
1045 -Attention:Take effect after ATZ
1046 -)))
653 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
654 +Set Transmit Interval
655 +0. (Disable Interrupt),
656 +~1. (Trigger by rising and falling edge)
657 +2. (Trigger by falling edge)
658 +3. (Trigger by rising edge)
659 +)))|(% style="width:157px" %)OK
1047 1047  
1048 -(% style="color:blue" %)**Downlink Command: 0x0A**
661 +(% style="color:blue" %)**Downlink Command: 0x06**
1049 1049  
1050 -Format: Command Code (0x0A) followed by 1 bytes.
663 +Format: Command Code (0x06) followed by 3 bytes.
1051 1051  
1052 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1053 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
665 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1054 1054  
667 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
668 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
669 +
1055 1055  = 4. Battery & Power Consumption =
1056 1056  
1057 1057  
... ... @@ -1064,27 +1064,24 @@
1064 1064  
1065 1065  
1066 1066  (% class="wikigeneratedid" %)
1067 -**User can change firmware SN50v3-LB to:**
682 +User can change firmware SN50v3-LB to:
1068 1068  
1069 1069  * Change Frequency band/ region.
1070 1070  * Update with new features.
1071 1071  * Fix bugs.
1072 1072  
1073 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
688 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1074 1074  
1075 -**Methods to Update Firmware:**
1076 1076  
691 +Methods to Update Firmware:
692 +
1077 1077  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1078 1078  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1079 1079  
1080 1080  = 6. FAQ =
1081 1081  
1082 -== 6.1 Where can i find source code of SN50v3-LB? ==
1083 1083  
1084 1084  
1085 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1086 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1087 -
1088 1088  = 7. Order Info =
1089 1089  
1090 1090  
... ... @@ -1110,7 +1110,6 @@
1110 1110  
1111 1111  = 8. ​Packing Info =
1112 1112  
1113 -
1114 1114  (% style="color:#037691" %)**Package Includes**:
1115 1115  
1116 1116  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1126,5 +1126,4 @@
1126 1126  
1127 1127  
1128 1128  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1129 -
1130 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
740 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0