<
From version < 45.3 >
edited by Xiaoling
on 2023/05/27 11:48
To version < 43.43 >
edited by Xiaoling
on 2023/05/16 15:07
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,7 +30,6 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -136,7 +136,7 @@
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
139 -== 1.9 Hole Option ==
138 +== Hole Option ==
140 140  
141 141  
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -151,7 +151,7 @@
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,7 +159,7 @@
159 159  
160 160  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161 161  
162 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 165  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -221,7 +221,7 @@
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
... ... @@ -277,22 +277,19 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281 281  
282 282  For example:
283 283  
284 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 +1. All modes share the same Payload Explanation from HERE.
290 +1. By default, the device will send an uplink message every 20 minutes.
290 290  
291 -2. All modes share the same Payload Explanation from HERE.
292 -
293 -3. By default, the device will send an uplink message every 20 minutes.
294 -
295 -
296 296  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297 297  
298 298  
... ... @@ -299,7 +299,7 @@
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 301  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
303 303  |**Value**|Bat|(% style="width:191px" %)(((
304 304  Temperature(DS18B20)(PC13)
305 305  )))|(% style="width:78px" %)(((
... ... @@ -317,11 +317,10 @@
317 317  
318 318  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319 319  
320 -
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 323  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
325 325  |**Value**|BAT|(% style="width:196px" %)(((
326 326  Temperature(DS18B20)(PC13)
327 327  )))|(% style="width:87px" %)(((
... ... @@ -330,29 +330,25 @@
330 330  Digital in(PB15) & Digital Interrupt(PA8)
331 331  )))|(% style="width:208px" %)(((
332 332  Distance measure by:1) LIDAR-Lite V3HP
333 -Or
334 -2) Ultrasonic Sensor
328 +Or 2) Ultrasonic Sensor
335 335  )))|(% style="width:117px" %)Reserved
336 336  
337 337  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
338 338  
339 -
340 340  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
341 341  
342 342  [[image:image-20230512173758-5.png||height="563" width="712"]]
343 343  
344 -
345 345  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
346 346  
347 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 348  
349 349  [[image:image-20230512173903-6.png||height="596" width="715"]]
350 350  
351 -
352 352  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
353 353  
354 354  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
355 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
356 356  |**Value**|BAT|(% style="width:183px" %)(((
357 357  Temperature(DS18B20)(PC13)
358 358  )))|(% style="width:173px" %)(((
... ... @@ -367,17 +367,15 @@
367 367  
368 368  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
369 369  
370 -
371 371  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372 372  
373 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 374  
375 375  [[image:image-20230512180609-7.png||height="555" width="802"]]
376 376  
377 -
378 378  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 381  
382 382  [[image:image-20230513105207-4.png||height="469" width="802"]]
383 383  
... ... @@ -384,13 +384,12 @@
384 384  
385 385  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
386 386  
387 -
388 388  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389 389  
390 390  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
391 391  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
392 392  **Size(bytes)**
393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 394  |**Value**|(% style="width:68px" %)(((
395 395  ADC1(PA4)
396 396  )))|(% style="width:75px" %)(((
... ... @@ -414,7 +414,7 @@
414 414  This mode has total 11 bytes. As shown below:
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
418 418  |**Value**|BAT|(% style="width:186px" %)(((
419 419  Temperature1(DS18B20)(PC13)
420 420  )))|(% style="width:82px" %)(((
... ... @@ -426,29 +426,24 @@
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
429 -
430 430  [[image:image-20230513134006-1.png||height="559" width="736"]]
431 431  
432 432  
433 433  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434 434  
435 -
436 436  [[image:image-20230512164658-2.png||height="532" width="729"]]
437 437  
438 438  Each HX711 need to be calibrated before used. User need to do below two steps:
439 439  
440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 442  1. (((
443 443  Weight has 4 bytes, the unit is g.
444 -
445 -
446 -
447 447  )))
448 448  
449 449  For example:
450 450  
451 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
434 +**AT+GETSENSORVALUE =0**
452 452  
453 453  Response:  Weight is 401 g
454 454  
... ... @@ -459,20 +459,20 @@
459 459  **Size(bytes)**
460 460  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
461 461  |**Value**|BAT|(% style="width:193px" %)(((
462 -Temperature(DS18B20)(PC13)
445 +Temperature(DS18B20)
446 +(PC13)
463 463  )))|(% style="width:85px" %)(((
464 464  ADC(PA4)
465 465  )))|(% style="width:186px" %)(((
466 -Digital in(PB15) & Digital Interrupt(PA8)
450 +Digital in(PB15) &
451 +Digital Interrupt(PA8)
467 467  )))|(% style="width:100px" %)Weight
468 468  
469 469  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470 470  
471 471  
472 -
473 473  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474 474  
475 -
476 476  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477 477  
478 478  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -479,11 +479,10 @@
479 479  
480 480  [[image:image-20230512181814-9.png||height="543" width="697"]]
481 481  
465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
482 482  
483 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484 -
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 487  |**Value**|BAT|(% style="width:256px" %)(((
488 488  Temperature(DS18B20)(PC13)
489 489  )))|(% style="width:108px" %)(((
... ... @@ -499,7 +499,6 @@
499 499  
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
502 -
503 503  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 504  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
505 505  **Size(bytes)**
... ... @@ -515,14 +515,12 @@
515 515  
516 516  [[image:image-20230513111203-7.png||height="324" width="975"]]
517 517  
518 -
519 519  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520 520  
521 -
522 522  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 523  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 524  **Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 526  |**Value**|BAT|(% style="width:207px" %)(((
527 527  Temperature(DS18B20)
528 528  (PC13)
... ... @@ -541,23 +541,22 @@
541 541  
542 542  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543 543  
544 -
545 545  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 546  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 547  **Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 549  |**Value**|BAT|(((
550 -Temperature
551 -(DS18B20)(PC13)
528 +Temperature1(DS18B20)
529 +(PC13)
552 552  )))|(((
553 -Temperature2
554 -(DS18B20)(PB9)
531 +Temperature2(DS18B20)
532 +(PB9)
555 555  )))|(((
556 556  Digital Interrupt
557 557  (PB15)
558 558  )))|(% style="width:193px" %)(((
559 -Temperature3
560 -(DS18B20)(PB8)
537 +Temperature3(DS18B20)
538 +(PB8)
561 561  )))|(% style="width:78px" %)(((
562 562  Count1(PA8)
563 563  )))|(% style="width:78px" %)(((
... ... @@ -568,11 +568,11 @@
568 568  
569 569  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
570 570  
571 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
549 +(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
572 572  
573 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
551 +(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
574 574  
575 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
553 +(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
576 576  
577 577  
578 578  (% style="color:blue" %)**AT+SETCNT=aa,bb** 
... ... @@ -582,9 +582,9 @@
582 582  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
563 +
585 585  === 2.3.3  ​Decode payload ===
586 586  
587 -
588 588  While using TTN V3 network, you can add the payload format to decode the payload.
589 589  
590 590  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -591,14 +591,13 @@
591 591  
592 592  The payload decoder function for TTN V3 are here:
593 593  
594 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
572 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 595  
596 596  
597 597  ==== 2.3.3.1 Battery Info ====
598 598  
577 +Check the battery voltage for SN50v3.
599 599  
600 -Check the battery voltage for SN50v3-LB.
601 -
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
... ... @@ -606,16 +606,14 @@
606 606  
607 607  ==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
609 -
610 610  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
611 611  
612 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
588 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
613 613  
614 614  (% style="color:blue" %)**Connection:**
615 615  
616 616  [[image:image-20230512180718-8.png||height="538" width="647"]]
617 617  
618 -
619 619  (% style="color:blue" %)**Example**:
620 620  
621 621  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -627,7 +627,6 @@
627 627  
628 628  ==== 2.3.3.3 Digital Input ====
629 629  
630 -
631 631  The digital input for pin PB15,
632 632  
633 633  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -637,14 +637,11 @@
637 637  (((
638 638  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
639 639  
640 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
641 -
642 -
614 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646 646  
647 -
648 648  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
649 649  
650 650  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -651,20 +651,17 @@
651 651  
652 652  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
653 653  
625 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
655 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
656 656  
657 -
658 658  ==== 2.3.3.5 Digital Interrupt ====
659 659  
630 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
660 660  
661 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
632 +(% style="color:blue" %)**~ Interrupt connection method:**
662 662  
663 -(% style="color:blue" %)** Interrupt connection method:**
664 -
665 665  [[image:image-20230513105351-5.png||height="147" width="485"]]
666 666  
667 -
668 668  (% style="color:blue" %)**Example to use with door sensor :**
669 669  
670 670  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -671,23 +671,22 @@
671 671  
672 672  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
673 673  
674 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
642 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
675 675  
644 +(% style="color:blue" %)**~ Below is the installation example:**
676 676  
677 -(% style="color:blue" %)**Below is the installation example:**
646 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
678 678  
679 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
680 -
681 681  * (((
682 -One pin to SN50v3-LB's PA8 pin
649 +One pin to SN50_v3's PA8 pin
683 683  )))
684 684  * (((
685 -The other pin to SN50v3-LB's VDD pin
652 +The other pin to SN50_v3's VDD pin
686 686  )))
687 687  
688 688  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
689 689  
690 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
657 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
691 691  
692 692  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
693 693  
... ... @@ -699,33 +699,30 @@
699 699  
700 700  The command is:
701 701  
702 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
669 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703 703  
704 704  Below shows some screen captures in TTN V3:
705 705  
706 706  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
707 707  
675 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
708 708  
709 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
710 -
711 711  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
712 712  
713 713  
714 714  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
715 715  
716 -
717 717  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
718 718  
719 719  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
720 720  
721 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
686 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
722 722  
723 -
724 724  Below is the connection to SHT20/ SHT31. The connection is as below:
725 725  
690 +
726 726  [[image:image-20230513103633-3.png||height="448" width="716"]]
727 727  
728 -
729 729  The device will be able to get the I2C sensor data now and upload to IoT Server.
730 730  
731 731  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -743,26 +743,23 @@
743 743  
744 744  ==== 2.3.3.7  ​Distance Reading ====
745 745  
746 -
747 747  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
748 748  
749 749  
750 750  ==== 2.3.3.8 Ultrasonic Sensor ====
751 751  
752 -
753 753  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
754 754  
755 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
717 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 756  
757 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
719 +The working principle of this sensor is similar to the **(% style="color:blue" %)HC-SR04**(%%) ultrasonic sensor.
758 758  
759 759  The picture below shows the connection:
760 760  
761 761  [[image:image-20230512173903-6.png||height="596" width="715"]]
762 762  
725 +Connect to the SN50_v3 and run **(% style="color:blue" %)AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
763 763  
764 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 -
766 766  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
767 767  
768 768  **Example:**
... ... @@ -770,17 +770,16 @@
770 770  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
771 771  
772 772  
734 +
773 773  ==== 2.3.3.9  Battery Output - BAT pin ====
774 774  
737 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
775 775  
776 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
777 777  
778 -
779 779  ==== 2.3.3.10  +5V Output ====
780 780  
742 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
781 781  
782 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
783 -
784 784  The 5V output time can be controlled by AT Command.
785 785  
786 786  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -787,23 +787,21 @@
787 787  
788 788  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
789 789  
790 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
750 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
791 791  
792 792  
753 +
793 793  ==== 2.3.3.11  BH1750 Illumination Sensor ====
794 794  
795 -
796 796  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
797 797  
798 798  [[image:image-20230512172447-4.png||height="416" width="712"]]
799 799  
800 -
801 801  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
802 802  
803 803  
804 804  ==== 2.3.3.12  Working MOD ====
805 805  
806 -
807 807  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
808 808  
809 809  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -820,6 +820,8 @@
820 820  * 7: MOD8
821 821  * 8: MOD9
822 822  
781 +
782 +
823 823  == 2.4 Payload Decoder file ==
824 824  
825 825  
... ... @@ -830,6 +830,7 @@
830 830  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
831 831  
832 832  
793 +
833 833  == 2.5 Frequency Plans ==
834 834  
835 835  
... ... @@ -865,12 +865,11 @@
865 865  == 3.3 Commands special design for SN50v3-LB ==
866 866  
867 867  
868 -These commands only valid for SN50v3-LB, as below:
829 +These commands only valid for S31x-LB, as below:
869 869  
870 870  
871 871  === 3.3.1 Set Transmit Interval Time ===
872 872  
873 -
874 874  Feature: Change LoRaWAN End Node Transmit Interval.
875 875  
876 876  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -896,25 +896,25 @@
896 896  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
897 897  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
898 898  
899 -=== 3.3.2 Get Device Status ===
900 900  
901 901  
861 +=== 3.3.2 Get Device Status ===
862 +
902 902  Send a LoRaWAN downlink to ask the device to send its status.
903 903  
904 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
865 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
905 905  
906 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
867 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
907 907  
908 908  
909 909  === 3.3.3 Set Interrupt Mode ===
910 910  
911 -
912 912  Feature, Set Interrupt mode for GPIO_EXIT.
913 913  
914 914  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
915 915  
916 916  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
917 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
877 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
918 918  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
919 919  0
920 920  OK
... ... @@ -929,6 +929,7 @@
929 929  )))|(% style="width:157px" %)OK
930 930  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
931 931  Set Transmit Interval
892 +
932 932  trigger by rising edge.
933 933  )))|(% style="width:157px" %)OK
934 934  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -944,9 +944,10 @@
944 944  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
945 945  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
946 946  
947 -=== 3.3.4 Set Power Output Duration ===
948 948  
949 949  
910 +=== 3.3.4 Set Power Output Duration ===
911 +
950 950  Control the output duration 5V . Before each sampling, device will
951 951  
952 952  ~1. first enable the power output to external sensor,
... ... @@ -958,7 +958,7 @@
958 958  (% style="color:blue" %)**AT Command: AT+5VT**
959 959  
960 960  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
961 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
962 962  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
963 963  500(default)
964 964  OK
... ... @@ -976,15 +976,16 @@
976 976  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
977 977  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
978 978  
979 -=== 3.3.5 Set Weighing parameters ===
980 980  
981 981  
943 +=== 3.3.5 Set Weighing parameters ===
944 +
982 982  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
983 983  
984 984  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
985 985  
986 986  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
987 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
950 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
988 988  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
989 989  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
990 990  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1001,9 +1001,10 @@
1001 1001  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1002 1002  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1003 1003  
1004 -=== 3.3.6 Set Digital pulse count value ===
1005 1005  
1006 1006  
969 +=== 3.3.6 Set Digital pulse count value ===
970 +
1007 1007  Feature: Set the pulse count value.
1008 1008  
1009 1009  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1011,7 +1011,7 @@
1011 1011  (% style="color:blue" %)**AT Command: AT+SETCNT**
1012 1012  
1013 1013  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1014 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
978 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1015 1015  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1016 1016  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1017 1017  
... ... @@ -1024,15 +1024,16 @@
1024 1024  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1025 1025  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1026 1026  
1027 -=== 3.3.7 Set Workmode ===
1028 1028  
1029 1029  
993 +=== 3.3.7 Set Workmode ===
994 +
1030 1030  Feature: Switch working mode.
1031 1031  
1032 1032  (% style="color:blue" %)**AT Command: AT+MOD**
1033 1033  
1034 1034  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1035 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1036 1036  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1037 1037  OK
1038 1038  )))
... ... @@ -1048,6 +1048,8 @@
1048 1048  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1049 1049  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1050 1050  
1016 +
1017 +
1051 1051  = 4. Battery & Power Consumption =
1052 1052  
1053 1053  
... ... @@ -1060,16 +1060,17 @@
1060 1060  
1061 1061  
1062 1062  (% class="wikigeneratedid" %)
1063 -**User can change firmware SN50v3-LB to:**
1030 +User can change firmware SN50v3-LB to:
1064 1064  
1065 1065  * Change Frequency band/ region.
1066 1066  * Update with new features.
1067 1067  * Fix bugs.
1068 1068  
1069 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1036 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1070 1070  
1071 -**Methods to Update Firmware:**
1072 1072  
1039 +Methods to Update Firmware:
1040 +
1073 1073  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1074 1074  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1075 1075  
... ... @@ -1077,7 +1077,6 @@
1077 1077  
1078 1078  == 6.1 Where can i find source code of SN50v3-LB? ==
1079 1079  
1080 -
1081 1081  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1082 1082  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1083 1083  
... ... @@ -1106,7 +1106,6 @@
1106 1106  
1107 1107  = 8. ​Packing Info =
1108 1108  
1109 -
1110 1110  (% style="color:#037691" %)**Package Includes**:
1111 1111  
1112 1112  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0