Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,7 +30,6 @@ 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -136,7 +136,7 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== 1.9Hole Option ==138 +== Hole Option == 140 140 141 141 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,22 +277,19 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)283 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 +1. All modes share the same Payload Explanation from HERE. 290 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 - 293 -3. By default, the device will send an uplink message every 20 minutes. 294 - 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 298 ... ... @@ -299,7 +299,7 @@ 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:90px" %)**1**|(% style="background-color:#d9e2f3;c0; width:130px" %)**2**|(% style="background-color:#d9e2f3;c0; width:80px" %)**2**298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2** 303 303 |**Value**|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( ... ... @@ -317,11 +317,10 @@ 317 317 318 318 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 319 319 320 - 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:30px" %)**2**|(% style="background-color:#d9e2f3;c0; width:110px" %)**2**|(% style="background-color:#d9e2f3;c0; width:40px" %)**2**|(% style="background-color:#d9e2f3;c0; width:110px" %)**1**|(% style="background-color:#d9e2f3;c0; width:140px" %)**2**|(% style="background-color:#d9e2f3;c0; width:40px" %)**2**319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2** 325 325 |**Value**|BAT|(% style="width:196px" %)((( 326 326 Temperature(DS18B20)(PC13) 327 327 )))|(% style="width:87px" %)((( ... ... @@ -330,29 +330,25 @@ 330 330 Digital in(PB15) & Digital Interrupt(PA8) 331 331 )))|(% style="width:208px" %)((( 332 332 Distance measure by:1) LIDAR-Lite V3HP 333 -Or 334 -2) Ultrasonic Sensor 328 +Or 2) Ultrasonic Sensor 335 335 )))|(% style="width:117px" %)Reserved 336 336 337 337 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 338 338 339 - 340 340 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 341 341 342 342 [[image:image-20230512173758-5.png||height="563" width="712"]] 343 343 344 - 345 345 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 346 346 347 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 348 348 349 349 [[image:image-20230512173903-6.png||height="596" width="715"]] 350 350 351 - 352 352 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 353 353 354 354 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 355 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:120px" %)**2**|(% style="background-color:#d9e2f3;c0; width:80px" %)**2**346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2** 356 356 |**Value**|BAT|(% style="width:183px" %)((( 357 357 Temperature(DS18B20)(PC13) 358 358 )))|(% style="width:173px" %)((( ... ... @@ -367,17 +367,15 @@ 367 367 368 368 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 369 369 370 - 371 371 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 372 372 373 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 374 375 375 [[image:image-20230512180609-7.png||height="555" width="802"]] 376 376 377 - 378 378 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 379 379 380 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 381 382 382 [[image:image-20230513105207-4.png||height="469" width="802"]] 383 383 ... ... @@ -384,13 +384,12 @@ 384 384 385 385 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 386 386 387 - 388 388 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 389 389 390 390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 391 391 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 392 392 **Size(bytes)** 393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 394 394 |**Value**|(% style="width:68px" %)((( 395 395 ADC1(PA4) 396 396 )))|(% style="width:75px" %)((( ... ... @@ -414,7 +414,7 @@ 414 414 This mode has total 11 bytes. As shown below: 415 415 416 416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2** 418 418 |**Value**|BAT|(% style="width:186px" %)((( 419 419 Temperature1(DS18B20)(PC13) 420 420 )))|(% style="width:82px" %)((( ... ... @@ -426,29 +426,24 @@ 426 426 427 427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 428 428 429 - 430 430 [[image:image-20230513134006-1.png||height="559" width="736"]] 431 431 432 432 433 433 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 434 434 435 - 436 436 [[image:image-20230512164658-2.png||height="532" width="729"]] 437 437 438 438 Each HX711 need to be calibrated before used. User need to do below two steps: 439 439 440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 442 442 1. ((( 443 443 Weight has 4 bytes, the unit is g. 444 - 445 - 446 - 447 447 ))) 448 448 449 449 For example: 450 450 451 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**434 +**AT+GETSENSORVALUE =0** 452 452 453 453 Response: Weight is 401 g 454 454 ... ... @@ -459,20 +459,20 @@ 459 459 **Size(bytes)** 460 460 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 461 461 |**Value**|BAT|(% style="width:193px" %)((( 462 -Temperature(DS18B20)(PC13) 445 +Temperature(DS18B20) 446 +(PC13) 463 463 )))|(% style="width:85px" %)((( 464 464 ADC(PA4) 465 465 )))|(% style="width:186px" %)((( 466 -Digital in(PB15) & Digital Interrupt(PA8) 450 +Digital in(PB15) & 451 +Digital Interrupt(PA8) 467 467 )))|(% style="width:100px" %)Weight 468 468 469 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 470 470 471 471 472 - 473 473 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 474 474 475 - 476 476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 477 477 478 478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -479,11 +479,10 @@ 479 479 480 480 [[image:image-20230512181814-9.png||height="543" width="697"]] 481 481 465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 482 482 483 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 484 - 485 485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 487 487 |**Value**|BAT|(% style="width:256px" %)((( 488 488 Temperature(DS18B20)(PC13) 489 489 )))|(% style="width:108px" %)((( ... ... @@ -499,7 +499,6 @@ 499 499 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 502 - 503 503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 505 505 **Size(bytes)** ... ... @@ -515,14 +515,12 @@ 515 515 516 516 [[image:image-20230513111203-7.png||height="324" width="975"]] 517 517 518 - 519 519 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 520 520 521 - 522 522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 524 524 **Size(bytes)** 525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 526 526 |**Value**|BAT|(% style="width:207px" %)((( 527 527 Temperature(DS18B20) 528 528 (PC13) ... ... @@ -541,23 +541,22 @@ 541 541 542 542 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 543 543 544 - 545 545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 547 547 **Size(bytes)** 548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 549 549 |**Value**|BAT|((( 550 -Temperature 551 -( DS18B20)(PC13)528 +Temperature1(DS18B20) 529 +(PC13) 552 552 )))|((( 553 -Temperature2 554 -( DS18B20)(PB9)531 +Temperature2(DS18B20) 532 +(PB9) 555 555 )))|((( 556 556 Digital Interrupt 557 557 (PB15) 558 558 )))|(% style="width:193px" %)((( 559 -Temperature3 560 -( DS18B20)(PB8)537 +Temperature3(DS18B20) 538 +(PB8) 561 561 )))|(% style="width:78px" %)((( 562 562 Count1(PA8) 563 563 )))|(% style="width:78px" %)((( ... ... @@ -566,25 +566,24 @@ 566 566 567 567 [[image:image-20230513111255-9.png||height="341" width="899"]] 568 568 569 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**547 +**The newly added AT command is issued correspondingly:** 570 570 571 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**549 +**~ AT+INTMOD1** ** PA8** pin: Corresponding downlink: **06 00 00 xx** 572 572 573 - (% style="color:#037691" %)** AT+INTMOD2(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**551 +**~ AT+INTMOD2** **PA4** pin: Corresponding downlink:** 06 00 01 xx** 574 574 575 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**553 +**~ AT+INTMOD3** **PB15** pin: Corresponding downlink: ** 06 00 02 xx** 576 576 555 +**AT+SETCNT=aa,bb** 577 577 578 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 579 - 580 580 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 581 581 582 582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 583 583 584 584 562 + 585 585 === 2.3.3 Decode payload === 586 586 587 - 588 588 While using TTN V3 network, you can add the payload format to decode the payload. 589 589 590 590 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -591,14 +591,13 @@ 591 591 592 592 The payload decoder function for TTN V3 are here: 593 593 594 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]571 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 595 596 596 597 597 ==== 2.3.3.1 Battery Info ==== 598 598 576 +Check the battery voltage for SN50v3. 599 599 600 -Check the battery voltage for SN50v3-LB. 601 - 602 602 Ex1: 0x0B45 = 2885mV 603 603 604 604 Ex2: 0x0B49 = 2889mV ... ... @@ -606,18 +606,16 @@ 606 606 607 607 ==== 2.3.3.2 Temperature (DS18B20) ==== 608 608 609 - 610 610 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 611 611 612 -More DS18B20 can check the [[3 DS18B20 mode>> ||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]587 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 613 613 614 - (% style="color:blue" %)**Connection:**589 +**Connection:** 615 615 616 616 [[image:image-20230512180718-8.png||height="538" width="647"]] 617 617 593 +**Example**: 618 618 619 -(% style="color:blue" %)**Example**: 620 - 621 621 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 622 622 623 623 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -627,7 +627,6 @@ 627 627 628 628 ==== 2.3.3.3 Digital Input ==== 629 629 630 - 631 631 The digital input for pin PB15, 632 632 633 633 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -637,14 +637,11 @@ 637 637 ((( 638 638 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 639 639 640 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 641 - 642 - 613 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 643 643 ))) 644 644 645 645 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 646 646 647 - 648 648 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 649 649 650 650 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -651,20 +651,17 @@ 651 651 652 652 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 653 653 624 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 654 654 655 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 656 656 657 - 658 658 ==== 2.3.3.5 Digital Interrupt ==== 659 659 629 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 660 660 661 - Digital Interruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.631 +(% style="color:blue" %)**~ Interrupt connection method:** 662 662 663 -(% style="color:blue" %)** Interrupt connection method:** 664 - 665 665 [[image:image-20230513105351-5.png||height="147" width="485"]] 666 666 667 - 668 668 (% style="color:blue" %)**Example to use with door sensor :** 669 669 670 670 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -671,23 +671,22 @@ 671 671 672 672 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 673 673 674 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.641 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 675 675 643 +(% style="color:blue" %)**~ Below is the installation example:** 676 676 677 - (%style="color:blue"%)**Belowisthe installationexample:**645 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 678 678 679 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 680 - 681 681 * ((( 682 -One pin to SN50v3 -LB's PA8 pin648 +One pin to SN50_v3's PA8 pin 683 683 ))) 684 684 * ((( 685 -The other pin to SN50v3 -LB's VDD pin651 +The other pin to SN50_v3's VDD pin 686 686 ))) 687 687 688 688 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 689 689 690 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.656 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 691 691 692 692 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 693 693 ... ... @@ -699,33 +699,30 @@ 699 699 700 700 The command is: 701 701 702 -(% style="color:blue" %)**AT+INTMOD1=1 668 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 703 703 704 704 Below shows some screen captures in TTN V3: 705 705 706 706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 707 707 674 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 708 708 709 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 710 - 711 711 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 712 712 713 713 714 714 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 715 715 716 - 717 717 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 718 718 719 719 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 720 720 721 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**685 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 722 722 723 - 724 724 Below is the connection to SHT20/ SHT31. The connection is as below: 725 725 689 + 726 726 [[image:image-20230513103633-3.png||height="448" width="716"]] 727 727 728 - 729 729 The device will be able to get the I2C sensor data now and upload to IoT Server. 730 730 731 731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -743,26 +743,23 @@ 743 743 744 744 ==== 2.3.3.7 Distance Reading ==== 745 745 709 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 746 746 747 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 748 748 749 - 750 750 ==== 2.3.3.8 Ultrasonic Sensor ==== 751 751 752 - 753 753 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 754 754 755 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.716 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 756 756 757 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%)ultrasonic sensor.718 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 758 758 759 759 The picture below shows the connection: 760 760 761 761 [[image:image-20230512173903-6.png||height="596" width="715"]] 762 762 724 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 763 763 764 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 765 - 766 766 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 767 767 768 768 **Example:** ... ... @@ -770,17 +770,16 @@ 770 770 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 771 771 772 772 733 + 773 773 ==== 2.3.3.9 Battery Output - BAT pin ==== 774 774 736 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 775 775 776 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 777 777 778 - 779 779 ==== 2.3.3.10 +5V Output ==== 780 780 741 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 781 781 782 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 783 - 784 784 The 5V output time can be controlled by AT Command. 785 785 786 786 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -787,23 +787,21 @@ 787 787 788 788 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 789 789 790 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.749 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 791 791 792 792 752 + 793 793 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 794 794 795 - 796 796 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 797 797 798 798 [[image:image-20230512172447-4.png||height="416" width="712"]] 799 799 800 - 801 801 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 802 802 803 803 804 804 ==== 2.3.3.12 Working MOD ==== 805 805 806 - 807 807 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 808 808 809 809 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -820,6 +820,8 @@ 820 820 * 7: MOD8 821 821 * 8: MOD9 822 822 780 + 781 + 823 823 == 2.4 Payload Decoder file == 824 824 825 825 ... ... @@ -830,6 +830,7 @@ 830 830 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 831 831 832 832 792 + 833 833 == 2.5 Frequency Plans == 834 834 835 835 ... ... @@ -865,12 +865,11 @@ 865 865 == 3.3 Commands special design for SN50v3-LB == 866 866 867 867 868 -These commands only valid for S N50v3-LB, as below:828 +These commands only valid for S31x-LB, as below: 869 869 870 870 871 871 === 3.3.1 Set Transmit Interval Time === 872 872 873 - 874 874 Feature: Change LoRaWAN End Node Transmit Interval. 875 875 876 876 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -896,25 +896,25 @@ 896 896 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 897 897 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 898 898 899 -=== 3.3.2 Get Device Status === 900 900 901 901 860 +=== 3.3.2 Get Device Status === 861 + 902 902 Send a LoRaWAN downlink to ask the device to send its status. 903 903 904 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **864 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 905 905 906 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.866 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 907 907 908 908 909 909 === 3.3.3 Set Interrupt Mode === 910 910 911 - 912 912 Feature, Set Interrupt mode for GPIO_EXIT. 913 913 914 914 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 915 915 916 916 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 917 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**876 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 918 918 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 919 919 0 920 920 OK ... ... @@ -929,6 +929,7 @@ 929 929 )))|(% style="width:157px" %)OK 930 930 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 931 931 Set Transmit Interval 891 + 932 932 trigger by rising edge. 933 933 )))|(% style="width:157px" %)OK 934 934 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -944,9 +944,10 @@ 944 944 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 945 945 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 946 946 947 -=== 3.3.4 Set Power Output Duration === 948 948 949 949 909 +=== 3.3.4 Set Power Output Duration === 910 + 950 950 Control the output duration 5V . Before each sampling, device will 951 951 952 952 ~1. first enable the power output to external sensor, ... ... @@ -958,7 +958,7 @@ 958 958 (% style="color:blue" %)**AT Command: AT+5VT** 959 959 960 960 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 961 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**922 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 962 962 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 963 963 500(default) 964 964 OK ... ... @@ -976,15 +976,16 @@ 976 976 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 977 977 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 978 978 979 -=== 3.3.5 Set Weighing parameters === 980 980 981 981 942 +=== 3.3.5 Set Weighing parameters === 943 + 982 982 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 983 983 984 984 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 985 985 986 986 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 987 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**949 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 988 988 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 989 989 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 990 990 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1001,9 +1001,10 @@ 1001 1001 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1002 1002 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1003 1003 1004 -=== 3.3.6 Set Digital pulse count value === 1005 1005 1006 1006 968 +=== 3.3.6 Set Digital pulse count value === 969 + 1007 1007 Feature: Set the pulse count value. 1008 1008 1009 1009 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1011,7 +1011,7 @@ 1011 1011 (% style="color:blue" %)**AT Command: AT+SETCNT** 1012 1012 1013 1013 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1014 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**977 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1015 1015 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1016 1016 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1017 1017 ... ... @@ -1024,15 +1024,16 @@ 1024 1024 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1025 1025 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1026 1026 1027 -=== 3.3.7 Set Workmode === 1028 1028 1029 1029 992 +=== 3.3.7 Set Workmode === 993 + 1030 1030 Feature: Switch working mode. 1031 1031 1032 1032 (% style="color:blue" %)**AT Command: AT+MOD** 1033 1033 1034 1034 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1035 -|=(% style="width: 15 5px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**999 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1036 1036 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1037 1037 OK 1038 1038 ))) ... ... @@ -1048,6 +1048,8 @@ 1048 1048 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1049 1049 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1050 1050 1015 + 1016 + 1051 1051 = 4. Battery & Power Consumption = 1052 1052 1053 1053 ... ... @@ -1060,16 +1060,17 @@ 1060 1060 1061 1061 1062 1062 (% class="wikigeneratedid" %) 1063 - **User can change firmware SN50v3-LB to:**1029 +User can change firmware SN50v3-LB to: 1064 1064 1065 1065 * Change Frequency band/ region. 1066 1066 * Update with new features. 1067 1067 * Fix bugs. 1068 1068 1069 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1035 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1070 1070 1071 -**Methods to Update Firmware:** 1072 1072 1038 +Methods to Update Firmware: 1039 + 1073 1073 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1074 1074 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1075 1075 ... ... @@ -1077,7 +1077,6 @@ 1077 1077 1078 1078 == 6.1 Where can i find source code of SN50v3-LB? == 1079 1079 1080 - 1081 1081 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1082 1082 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1083 1083 ... ... @@ -1106,7 +1106,6 @@ 1106 1106 1107 1107 = 8. Packing Info = 1108 1108 1109 - 1110 1110 (% style="color:#037691" %)**Package Includes**: 1111 1111 1112 1112 * SN50v3-LB LoRaWAN Generic Node