<
From version < 45.2 >
edited by Xiaoling
on 2023/05/27 11:47
To version < 36.1 >
edited by Saxer Lin
on 2023/05/13 11:59
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -43,7 +43,6 @@
43 43  
44 44  == 1.3 Specification ==
45 45  
46 -
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,7 +80,6 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 -
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -136,9 +136,8 @@
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
139 -== 1.9 Hole Option ==
138 +== Hole Option ==
140 140  
141 -
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -151,7 +151,7 @@
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,7 +159,7 @@
159 159  
160 160  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161 161  
162 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 165  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -221,7 +221,7 @@
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
... ... @@ -277,39 +277,46 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281 281  
282 282  For example:
283 283  
284 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
290 290  
291 -2. All modes share the same Payload Explanation from HERE.
291 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
292 292  
293 -3. By default, the device will send an uplink message every 20 minutes.
293 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
294 294  
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
295 295  
296 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 +(PC13)
300 +)))|(((
301 +ADC
297 297  
303 +(PA4)
304 +)))|(% style="width:216px" %)(((
305 +Digital in(PB15) &
298 298  
299 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 +Digital Interrupt(PA8)
300 300  
301 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 -|**Value**|Bat|(% style="width:191px" %)(((
304 -Temperature(DS18B20)(PC13)
305 -)))|(% style="width:78px" %)(((
306 -ADC(PA4)
307 -)))|(% style="width:216px" %)(((
308 -Digital in(PB15)&Digital Interrupt(PA8)
309 -)))|(% style="width:308px" %)(((
310 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 -)))|(% style="width:154px" %)(((
312 -Humidity(SHT20 or SHT31)
309 +
310 +)))|(% style="width:342px" %)(((
311 +Temperature
312 +
313 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +)))|(% style="width:171px" %)(((
315 +Humidity
316 +
317 +(SHT20 or SHT31)
313 313  )))
314 314  
315 315  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -317,67 +317,72 @@
317 317  
318 318  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319 319  
320 -
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 -|**Value**|BAT|(% style="width:196px" %)(((
326 -Temperature(DS18B20)(PC13)
327 -)))|(% style="width:87px" %)(((
328 -ADC(PA4)
329 -)))|(% style="width:189px" %)(((
330 -Digital in(PB15) & Digital Interrupt(PA8)
331 -)))|(% style="width:208px" %)(((
332 -Distance measure by:1) LIDAR-Lite V3HP
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +
331 +(PC13)
332 +)))|(((
333 +ADC
334 +
335 +(PA4)
336 +)))|(((
337 +Digital in(PB15) &
338 +
339 +Digital Interrupt(PA8)
340 +)))|(((
341 +Distance measure by:
342 +1) LIDAR-Lite V3HP
333 333  Or
334 334  2) Ultrasonic Sensor
335 -)))|(% style="width:117px" %)Reserved
345 +)))|Reserved
336 336  
337 337  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
338 338  
349 +**Connection of LIDAR-Lite V3HP:**
339 339  
340 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
341 -
342 342  [[image:image-20230512173758-5.png||height="563" width="712"]]
343 343  
353 +**Connection to Ultrasonic Sensor:**
344 344  
345 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
355 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
346 346  
347 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
348 -
349 349  [[image:image-20230512173903-6.png||height="596" width="715"]]
350 350  
351 -
352 352  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
353 353  
354 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
355 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
356 -|**Value**|BAT|(% style="width:183px" %)(((
357 -Temperature(DS18B20)(PC13)
358 -)))|(% style="width:173px" %)(((
359 -Digital in(PB15) & Digital Interrupt(PA8)
360 -)))|(% style="width:84px" %)(((
361 -ADC(PA4)
362 -)))|(% style="width:323px" %)(((
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
363 +Temperature(DS18B20)
364 +
365 +(PC13)
366 +)))|(((
367 +Digital in(PB15) &
368 +
369 +Digital Interrupt(PA8)
370 +)))|(((
371 +ADC
372 +
373 +(PA4)
374 +)))|(((
363 363  Distance measure by:1)TF-Mini plus LiDAR
364 364  Or 
365 365  2) TF-Luna LiDAR
366 -)))|(% style="width:188px" %)Distance signal  strength
378 +)))|Distance signal  strength
367 367  
368 368  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
369 369  
370 -
371 371  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372 372  
373 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
384 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 374  
375 375  [[image:image-20230512180609-7.png||height="555" width="802"]]
376 376  
377 -
378 378  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
390 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 381  
382 382  [[image:image-20230513105207-4.png||height="469" width="802"]]
383 383  
... ... @@ -384,25 +384,34 @@
384 384  
385 385  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
386 386  
387 -
388 388  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389 389  
390 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
391 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 +(% style="width:1031px" %)
400 +|=(((
392 392  **Size(bytes)**
393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
394 394  |**Value**|(% style="width:68px" %)(((
395 -ADC1(PA4)
404 +ADC1
405 +
406 +(PA4)
396 396  )))|(% style="width:75px" %)(((
397 -ADC2(PA5)
408 +ADC2
409 +
410 +(PA5)
398 398  )))|(((
399 -ADC3(PA8)
412 +ADC3
413 +
414 +(PA8)
400 400  )))|(((
401 401  Digital Interrupt(PB15)
402 402  )))|(% style="width:304px" %)(((
403 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
418 +Temperature
419 +
420 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 404  )))|(% style="width:163px" %)(((
405 -Humidity(SHT20 or SHT31)
422 +Humidity
423 +
424 +(SHT20 or SHT31)
406 406  )))|(% style="width:53px" %)Bat
407 407  
408 408  [[image:image-20230513110214-6.png]]
... ... @@ -410,69 +410,75 @@
410 410  
411 411  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
412 412  
432 +[[image:image-20230512170701-3.png||height="565" width="743"]]
413 413  
414 414  This mode has total 11 bytes. As shown below:
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
436 +(% style="width:1017px" %)
437 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
418 418  |**Value**|BAT|(% style="width:186px" %)(((
419 -Temperature1(DS18B20)(PC13)
439 +Temperature1(DS18B20)
440 +(PC13)
420 420  )))|(% style="width:82px" %)(((
421 -ADC(PA4)
442 +ADC
443 +
444 +(PA4)
422 422  )))|(% style="width:210px" %)(((
423 -Digital in(PB15) & Digital Interrupt(PA8) 
446 +Digital in(PB15) &
447 +
448 +Digital Interrupt(PA8) 
424 424  )))|(% style="width:191px" %)Temperature2(DS18B20)
425 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
450 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 +(PB8)
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
429 429  
430 -[[image:image-20230513134006-1.png||height="559" width="736"]]
431 -
432 -
433 433  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434 434  
435 -
436 436  [[image:image-20230512164658-2.png||height="532" width="729"]]
437 437  
438 438  Each HX711 need to be calibrated before used. User need to do below two steps:
439 439  
440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
462 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
463 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 442  1. (((
443 443  Weight has 4 bytes, the unit is g.
444 -
445 -
446 -
447 447  )))
448 448  
449 449  For example:
450 450  
451 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
470 +**AT+GETSENSORVALUE =0**
452 452  
453 453  Response:  Weight is 401 g
454 454  
455 455  Check the response of this command and adjust the value to match the real value for thing.
456 456  
457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
476 +(% style="width:982px" %)
477 +|=(((
459 459  **Size(bytes)**
460 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
461 -|**Value**|BAT|(% style="width:193px" %)(((
462 -Temperature(DS18B20)(PC13)
463 -)))|(% style="width:85px" %)(((
464 -ADC(PA4)
465 -)))|(% style="width:186px" %)(((
466 -Digital in(PB15) & Digital Interrupt(PA8)
467 -)))|(% style="width:100px" %)Weight
479 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
480 +|**Value**|BAT|(% style="width:282px" %)(((
481 +Temperature(DS18B20)
468 468  
469 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
483 +(PC13)
470 470  
485 +
486 +)))|(% style="width:119px" %)(((
487 +ADC
471 471  
489 +(PA4)
490 +)))|(% style="width:279px" %)(((
491 +Digital in(PB15) &
472 472  
473 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
493 +Digital Interrupt(PA8)
494 +)))|(% style="width:106px" %)Weight
474 474  
496 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
498 +
499 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
500 +
476 476  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477 477  
478 478  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -479,19 +479,26 @@
479 479  
480 480  [[image:image-20230512181814-9.png||height="543" width="697"]]
481 481  
507 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
482 482  
483 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484 -
485 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
509 +(% style="width:961px" %)
510 +|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
487 487  |**Value**|BAT|(% style="width:256px" %)(((
488 -Temperature(DS18B20)(PC13)
512 +Temperature(DS18B20)
513 +
514 +(PC13)
489 489  )))|(% style="width:108px" %)(((
490 -ADC(PA4)
516 +ADC
517 +
518 +(PA4)
491 491  )))|(% style="width:126px" %)(((
492 -Digital in(PB15)
520 +Digital in
521 +
522 +(PB15)
493 493  )))|(% style="width:145px" %)(((
494 -Count(PA8)
524 +Count
525 +
526 +(PA8)
495 495  )))
496 496  
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -499,41 +499,47 @@
499 499  
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
502 -
503 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
534 +|=(((
505 505  **Size(bytes)**
506 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 -|**Value**|BAT|(% style="width:188px" %)(((
536 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
537 +|**Value**|BAT|(((
508 508  Temperature(DS18B20)
539 +
509 509  (PC13)
510 -)))|(% style="width:83px" %)(((
511 -ADC(PA5)
512 -)))|(% style="width:184px" %)(((
541 +)))|(((
542 +ADC
543 +
544 +(PA5)
545 +)))|(((
513 513  Digital Interrupt1(PA8)
514 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
547 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
515 515  
516 516  [[image:image-20230513111203-7.png||height="324" width="975"]]
517 517  
518 -
519 519  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520 520  
521 -
522 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 +(% style="width:917px" %)
554 +|=(((
524 524  **Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
556 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
526 526  |**Value**|BAT|(% style="width:207px" %)(((
527 527  Temperature(DS18B20)
559 +
528 528  (PC13)
529 529  )))|(% style="width:94px" %)(((
530 -ADC1(PA4)
562 +ADC1
563 +
564 +(PA4)
531 531  )))|(% style="width:198px" %)(((
532 532  Digital Interrupt(PB15)
533 533  )))|(% style="width:84px" %)(((
534 -ADC2(PA5)
535 -)))|(% style="width:82px" %)(((
536 -ADC3(PA8)
568 +ADC2
569 +
570 +(PA5)
571 +)))|(% style="width:79px" %)(((
572 +ADC3
573 +
574 +(PA8)
537 537  )))
538 538  
539 539  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -541,50 +541,56 @@
541 541  
542 542  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543 543  
544 -
545 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
582 +(% style="width:1010px" %)
583 +|=(((
547 547  **Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
585 +)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
549 549  |**Value**|BAT|(((
550 -Temperature
551 -(DS18B20)(PC13)
587 +Temperature1(DS18B20)
588 +
589 +(PC13)
552 552  )))|(((
553 -Temperature2
554 -(DS18B20)(PB9)
591 +Temperature2(DS18B20)
592 +
593 +(PB9)
555 555  )))|(((
556 556  Digital Interrupt
596 +
557 557  (PB15)
558 558  )))|(% style="width:193px" %)(((
559 -Temperature3
560 -(DS18B20)(PB8)
599 +Temperature3(DS18B20)
600 +
601 +(PB8)
561 561  )))|(% style="width:78px" %)(((
562 -Count1(PA8)
603 +Count1
604 +
605 +(PA8)
563 563  )))|(% style="width:78px" %)(((
564 -Count2(PA4)
607 +Count2
608 +
609 +(PA4)
565 565  )))
566 566  
567 567  [[image:image-20230513111255-9.png||height="341" width="899"]]
568 568  
569 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
614 +**The newly added AT command is issued correspondingly:**
570 570  
571 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
616 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
572 572  
573 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
618 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
574 574  
575 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
620 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
576 576  
622 +**AT+SETCNT=aa,bb** 
577 577  
578 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
579 -
580 580  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
581 581  
582 582  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
629 +
585 585  === 2.3.3  ​Decode payload ===
586 586  
587 -
588 588  While using TTN V3 network, you can add the payload format to decode the payload.
589 589  
590 590  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -591,14 +591,13 @@
591 591  
592 592  The payload decoder function for TTN V3 are here:
593 593  
594 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
638 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 595  
596 596  
597 597  ==== 2.3.3.1 Battery Info ====
598 598  
643 +Check the battery voltage for SN50v3.
599 599  
600 -Check the battery voltage for SN50v3-LB.
601 -
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
... ... @@ -606,18 +606,16 @@
606 606  
607 607  ==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
652 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
609 609  
610 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
654 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
611 611  
612 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
656 +**Connection:**
613 613  
614 -(% style="color:blue" %)**Connection:**
615 -
616 616  [[image:image-20230512180718-8.png||height="538" width="647"]]
617 617  
660 +**Example**:
618 618  
619 -(% style="color:blue" %)**Example**:
620 -
621 621  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
622 622  
623 623  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -627,7 +627,6 @@
627 627  
628 628  ==== 2.3.3.3 Digital Input ====
629 629  
630 -
631 631  The digital input for pin PB15,
632 632  
633 633  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -637,14 +637,11 @@
637 637  (((
638 638  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
639 639  
640 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
641 -
642 -
680 +**Note:**The maximum voltage input supports 3.6V.
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646 646  
647 -
648 648  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
649 649  
650 650  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -651,43 +651,38 @@
651 651  
652 652  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
653 653  
691 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
655 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
656 -
657 -
658 658  ==== 2.3.3.5 Digital Interrupt ====
659 659  
695 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
660 660  
661 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
697 +**~ Interrupt connection method:**
662 662  
663 -(% style="color:blue" %)** Interrupt connection method:**
664 -
665 665  [[image:image-20230513105351-5.png||height="147" width="485"]]
666 666  
701 +**Example to use with door sensor :**
667 667  
668 -(% style="color:blue" %)**Example to use with door sensor :**
669 -
670 670  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
671 671  
672 672  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
673 673  
674 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
707 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
675 675  
709 +**~ Below is the installation example:**
676 676  
677 -(% style="color:blue" %)**Below is the installation example:**
711 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
678 678  
679 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
680 -
681 681  * (((
682 -One pin to SN50v3-LB's PA8 pin
714 +One pin to SN50_v3's PA8 pin
683 683  )))
684 684  * (((
685 -The other pin to SN50v3-LB's VDD pin
717 +The other pin to SN50_v3's VDD pin
686 686  )))
687 687  
688 688  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
689 689  
690 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
722 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
691 691  
692 692  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
693 693  
... ... @@ -699,32 +699,29 @@
699 699  
700 700  The command is:
701 701  
702 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
734 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703 703  
704 704  Below shows some screen captures in TTN V3:
705 705  
706 706  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
707 707  
740 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
708 708  
709 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
710 -
711 711  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
712 712  
713 713  
714 714  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
715 715  
716 -
717 717  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
718 718  
719 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
749 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
720 720  
721 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
751 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
722 722  
723 -
724 724  Below is the connection to SHT20/ SHT31. The connection is as below:
725 725  
726 -[[image:image-20230513103633-3.png||height="448" width="716"]]
727 727  
756 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
728 728  
729 729  The device will be able to get the I2C sensor data now and upload to IoT Server.
730 730  
... ... @@ -743,26 +743,23 @@
743 743  
744 744  ==== 2.3.3.7  ​Distance Reading ====
745 745  
775 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
746 746  
747 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
748 748  
749 -
750 750  ==== 2.3.3.8 Ultrasonic Sensor ====
751 751  
752 -
753 753  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
754 754  
755 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
782 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 756  
757 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
784 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
758 758  
759 759  The picture below shows the connection:
760 760  
761 761  [[image:image-20230512173903-6.png||height="596" width="715"]]
762 762  
790 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
763 763  
764 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 -
766 766  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
767 767  
768 768  **Example:**
... ... @@ -770,40 +770,37 @@
770 770  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
771 771  
772 772  
799 +
773 773  ==== 2.3.3.9  Battery Output - BAT pin ====
774 774  
802 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
775 775  
776 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
777 777  
778 -
779 779  ==== 2.3.3.10  +5V Output ====
780 780  
807 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
781 781  
782 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
783 -
784 784  The 5V output time can be controlled by AT Command.
785 785  
786 -(% style="color:blue" %)**AT+5VT=1000**
811 +**AT+5VT=1000**
787 787  
788 788  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
789 789  
790 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
815 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
791 791  
792 792  
818 +
793 793  ==== 2.3.3.11  BH1750 Illumination Sensor ====
794 794  
795 -
796 796  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
797 797  
798 -[[image:image-20230512172447-4.png||height="416" width="712"]]
823 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
799 799  
825 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
800 800  
801 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
802 802  
803 -
804 804  ==== 2.3.3.12  Working MOD ====
805 805  
806 -
807 807  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
808 808  
809 809  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -827,9 +827,10 @@
827 827  
828 828  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
829 829  
830 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
853 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
831 831  
832 832  
856 +
833 833  == 2.5 Frequency Plans ==
834 834  
835 835  
... ... @@ -865,7 +865,7 @@
865 865  == 3.3 Commands special design for SN50v3-LB ==
866 866  
867 867  
868 -These commands only valid for SN50v3-LB, as below:
892 +These commands only valid for S31x-LB, as below:
869 869  
870 870  
871 871  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -898,14 +898,13 @@
898 898  
899 899  === 3.3.2 Get Device Status ===
900 900  
925 +Send a LoRaWAN downlink to ask device send Alarm settings.
901 901  
902 -Send a LoRaWAN downlink to ask the device to send its status.
927 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
903 903  
904 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
929 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
905 905  
906 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
907 907  
908 -
909 909  === 3.3.3 Set Interrupt Mode ===
910 910  
911 911  
... ... @@ -914,7 +914,7 @@
914 914  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
915 915  
916 916  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
917 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
940 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
918 918  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
919 919  0
920 920  OK
... ... @@ -929,6 +929,7 @@
929 929  )))|(% style="width:157px" %)OK
930 930  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
931 931  Set Transmit Interval
955 +
932 932  trigger by rising edge.
933 933  )))|(% style="width:157px" %)OK
934 934  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -944,9 +944,9 @@
944 944  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
945 945  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
946 946  
971 +(% class="wikigeneratedid" %)
947 947  === 3.3.4 Set Power Output Duration ===
948 948  
949 -
950 950  Control the output duration 5V . Before each sampling, device will
951 951  
952 952  ~1. first enable the power output to external sensor,
... ... @@ -958,9 +958,10 @@
958 958  (% style="color:blue" %)**AT Command: AT+5VT**
959 959  
960 960  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
961 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
985 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
962 962  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
963 963  500(default)
988 +
964 964  OK
965 965  )))
966 966  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -973,41 +973,34 @@
973 973  
974 974  The first and second bytes are the time to turn on.
975 975  
976 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
977 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
978 978  
1004 +(% class="wikigeneratedid" %)
979 979  === 3.3.5 Set Weighing parameters ===
980 980  
1007 +Feature: Working mode 5 is effective, hair removal and setting of weight factor of HX711.
981 981  
982 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
983 -
984 984  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
985 985  
986 986  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
987 987  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
988 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
989 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
990 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1013 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1014 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
991 991  
1016 +
992 992  (% style="color:blue" %)**Downlink Command: 0x08**
993 993  
994 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
995 995  
996 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1020 +Format: Command Code (0x07) followed by 2 bytes.
997 997  
998 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1022 +The first and second bytes are the time to turn on.
999 999  
1000 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1001 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1002 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1003 1003  
1004 1004  === 3.3.6 Set Digital pulse count value ===
1005 1005  
1006 -
1007 1007  Feature: Set the pulse count value.
1008 1008  
1009 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1010 -
1011 1011  (% style="color:blue" %)**AT Command: AT+SETCNT**
1012 1012  
1013 1013  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -1015,20 +1015,21 @@
1015 1015  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1016 1016  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1017 1017  
1036 +
1018 1018  (% style="color:blue" %)**Downlink Command: 0x09**
1019 1019  
1039 +
1020 1020  Format: Command Code (0x09) followed by 5 bytes.
1021 1021  
1022 1022  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1023 1023  
1024 1024  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1025 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 +* Example 2: Downlink Payload: 090200000000  **~-~-->**  AT+5VT=500
1026 1026  
1027 1027  === 3.3.7 Set Workmode ===
1028 1028  
1049 +Feature: switch working mode.
1029 1029  
1030 -Feature: Switch working mode.
1031 -
1032 1032  (% style="color:blue" %)**AT Command: AT+MOD**
1033 1033  
1034 1034  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -1038,11 +1038,14 @@
1038 1038  )))
1039 1039  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1040 1040  OK
1060 +
1041 1041  Attention:Take effect after ATZ
1042 1042  )))
1043 1043  
1064 +
1044 1044  (% style="color:blue" %)**Downlink Command: 0x0A**
1045 1045  
1067 +
1046 1046  Format: Command Code (0x0A) followed by 1 bytes.
1047 1047  
1048 1048  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
... ... @@ -1060,16 +1060,17 @@
1060 1060  
1061 1061  
1062 1062  (% class="wikigeneratedid" %)
1063 -**User can change firmware SN50v3-LB to:**
1085 +User can change firmware SN50v3-LB to:
1064 1064  
1065 1065  * Change Frequency band/ region.
1066 1066  * Update with new features.
1067 1067  * Fix bugs.
1068 1068  
1069 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1091 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1070 1070  
1071 -**Methods to Update Firmware:**
1072 1072  
1094 +Methods to Update Firmware:
1095 +
1073 1073  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1074 1074  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1075 1075  
... ... @@ -1077,7 +1077,6 @@
1077 1077  
1078 1078  == 6.1 Where can i find source code of SN50v3-LB? ==
1079 1079  
1080 -
1081 1081  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1082 1082  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1083 1083  
... ... @@ -1106,7 +1106,6 @@
1106 1106  
1107 1107  = 8. ​Packing Info =
1108 1108  
1109 -
1110 1110  (% style="color:#037691" %)**Package Includes**:
1111 1111  
1112 1112  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1122,5 +1122,4 @@
1122 1122  
1123 1123  
1124 1124  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1125 -
1126 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1146 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0