<
From version < 45.2 >
edited by Xiaoling
on 2023/05/27 11:47
To version < 34.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111231-8.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -43,7 +43,6 @@
43 43  
44 44  == 1.3 Specification ==
45 45  
46 -
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,7 +80,6 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 -
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -123,7 +123,7 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -136,9 +136,8 @@
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
139 -== 1.9 Hole Option ==
138 +== Hole Option ==
140 140  
141 -
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -151,7 +151,7 @@
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,7 +159,7 @@
159 159  
160 160  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161 161  
162 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 165  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -221,7 +221,7 @@
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
... ... @@ -277,202 +277,186 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281 281  
282 282  For example:
283 283  
284 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
290 290  
291 -2. All modes share the same Payload Explanation from HERE.
292 -
293 -3. By default, the device will send an uplink message every 20 minutes.
294 -
295 -
296 296  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297 297  
298 -
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 -|**Value**|Bat|(% style="width:191px" %)(((
304 -Temperature(DS18B20)(PC13)
305 -)))|(% style="width:78px" %)(((
306 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
307 307  )))|(% style="width:216px" %)(((
308 -Digital in(PB15)&Digital Interrupt(PA8)
309 -)))|(% style="width:308px" %)(((
310 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 -)))|(% style="width:154px" %)(((
312 -Humidity(SHT20 or SHT31)
313 -)))
305 +Digital in & Digital Interrupt
314 314  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
315 315  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316 316  
317 317  
318 318  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319 319  
320 -
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 -|**Value**|BAT|(% style="width:196px" %)(((
326 -Temperature(DS18B20)(PC13)
327 -)))|(% style="width:87px" %)(((
328 -ADC(PA4)
329 -)))|(% style="width:189px" %)(((
330 -Digital in(PB15) & Digital Interrupt(PA8)
331 -)))|(% style="width:208px" %)(((
332 -Distance measure by:1) LIDAR-Lite V3HP
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
333 333  Or
334 334  2) Ultrasonic Sensor
335 -)))|(% style="width:117px" %)Reserved
325 +)))|Reserved
336 336  
337 337  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
338 338  
329 +**Connection of LIDAR-Lite V3HP:**
339 339  
340 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
341 -
342 342  [[image:image-20230512173758-5.png||height="563" width="712"]]
343 343  
333 +**Connection to Ultrasonic Sensor:**
344 344  
345 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
346 -
347 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
348 -
349 349  [[image:image-20230512173903-6.png||height="596" width="715"]]
350 350  
351 -
352 352  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
353 353  
354 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
355 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
356 -|**Value**|BAT|(% style="width:183px" %)(((
357 -Temperature(DS18B20)(PC13)
358 -)))|(% style="width:173px" %)(((
359 -Digital in(PB15) & Digital Interrupt(PA8)
360 -)))|(% style="width:84px" %)(((
361 -ADC(PA4)
362 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
363 363  Distance measure by:1)TF-Mini plus LiDAR
364 364  Or 
365 365  2) TF-Luna LiDAR
366 -)))|(% style="width:188px" %)Distance signal  strength
346 +)))|Distance signal  strength
367 367  
368 368  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
369 369  
370 -
371 371  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372 372  
373 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
374 374  
375 375  [[image:image-20230512180609-7.png||height="555" width="802"]]
376 376  
377 -
378 378  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
381 381  
382 -[[image:image-20230513105207-4.png||height="469" width="802"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
383 383  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
384 384  
364 +
385 385  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
386 386  
387 -
388 388  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389 389  
390 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
391 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
392 392  **Size(bytes)**
393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
394 394  |**Value**|(% style="width:68px" %)(((
395 -ADC1(PA4)
373 +ADC
374 +
375 +(PA0)
396 396  )))|(% style="width:75px" %)(((
397 -ADC2(PA5)
398 -)))|(((
399 -ADC3(PA8)
400 -)))|(((
401 -Digital Interrupt(PB15)
402 -)))|(% style="width:304px" %)(((
403 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 -)))|(% style="width:163px" %)(((
405 -Humidity(SHT20 or SHT31)
406 -)))|(% style="width:53px" %)Bat
377 +ADC2
407 407  
408 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
409 409  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
410 410  
386 +
411 411  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
412 412  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
413 413  
414 414  This mode has total 11 bytes. As shown below:
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
418 418  |**Value**|BAT|(% style="width:186px" %)(((
419 -Temperature1(DS18B20)(PC13)
396 +Temperature1(DS18B20)
397 +(PC13)
420 420  )))|(% style="width:82px" %)(((
421 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
422 422  )))|(% style="width:210px" %)(((
423 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
424 424  )))|(% style="width:191px" %)Temperature2(DS18B20)
425 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
429 429  
430 -[[image:image-20230513134006-1.png||height="559" width="736"]]
431 -
432 -
433 433  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434 434  
435 -
436 436  [[image:image-20230512164658-2.png||height="532" width="729"]]
437 437  
438 438  Each HX711 need to be calibrated before used. User need to do below two steps:
439 439  
440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 442  1. (((
443 443  Weight has 4 bytes, the unit is g.
444 -
445 -
446 -
447 447  )))
448 448  
449 449  For example:
450 450  
451 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
452 452  
453 453  Response:  Weight is 401 g
454 454  
455 455  Check the response of this command and adjust the value to match the real value for thing.
456 456  
457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
459 459  **Size(bytes)**
460 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
461 -|**Value**|BAT|(% style="width:193px" %)(((
462 -Temperature(DS18B20)(PC13)
463 -)))|(% style="width:85px" %)(((
464 -ADC(PA4)
465 -)))|(% style="width:186px" %)(((
466 -Digital in(PB15) & Digital Interrupt(PA8)
467 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
468 468  
469 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
440 +(PC13)
470 470  
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
471 471  
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
472 472  
473 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
474 474  
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
455 +
456 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
457 +
476 476  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477 477  
478 478  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -479,112 +479,86 @@
479 479  
480 480  [[image:image-20230512181814-9.png||height="543" width="697"]]
481 481  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
482 482  
483 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
484 484  
485 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 -|**Value**|BAT|(% style="width:256px" %)(((
488 -Temperature(DS18B20)(PC13)
489 -)))|(% style="width:108px" %)(((
490 -ADC(PA4)
491 -)))|(% style="width:126px" %)(((
492 -Digital in(PB15)
493 -)))|(% style="width:145px" %)(((
494 -Count(PA8)
495 -)))
496 -
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498 498  
499 499  
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
502 502  
503 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
505 505  **Size(bytes)**
506 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 -|**Value**|BAT|(% style="width:188px" %)(((
508 -Temperature(DS18B20)
509 -(PC13)
510 -)))|(% style="width:83px" %)(((
511 -ADC(PA5)
512 -)))|(% style="width:184px" %)(((
513 -Digital Interrupt1(PA8)
514 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
515 515  
516 -[[image:image-20230513111203-7.png||height="324" width="975"]]
517 -
518 -
519 519  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520 520  
521 -
522 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
524 524  **Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 -|**Value**|BAT|(% style="width:207px" %)(((
527 -Temperature(DS18B20)
528 -(PC13)
529 -)))|(% style="width:94px" %)(((
530 -ADC1(PA4)
531 -)))|(% style="width:198px" %)(((
532 -Digital Interrupt(PB15)
533 -)))|(% style="width:84px" %)(((
534 -ADC2(PA5)
535 -)))|(% style="width:82px" %)(((
536 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
537 537  )))
538 538  
539 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
540 540  
541 541  
542 542  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543 543  
544 -
545 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
547 547  **Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
549 549  |**Value**|BAT|(((
550 -Temperature
551 -(DS18B20)(PC13)
510 +Temperature1(PB3)
552 552  )))|(((
553 -Temperature2
554 -(DS18B20)(PB9)
512 +Temperature2(PA9)
555 555  )))|(((
556 -Digital Interrupt
557 -(PB15)
558 -)))|(% style="width:193px" %)(((
559 -Temperature3
560 -(DS18B20)(PB8)
561 -)))|(% style="width:78px" %)(((
562 -Count1(PA8)
563 -)))|(% style="width:78px" %)(((
564 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
565 565  )))
566 566  
567 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
568 568  
569 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
570 570  
571 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
572 572  
573 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
574 574  
575 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
576 576  
534 +**AT+SETCNT=aa,bb** 
577 577  
578 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
579 579  
580 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
581 581  
582 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
585 585  === 2.3.3  ​Decode payload ===
586 586  
587 -
588 588  While using TTN V3 network, you can add the payload format to decode the payload.
589 589  
590 590  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -591,14 +591,13 @@
591 591  
592 592  The payload decoder function for TTN V3 are here:
593 593  
594 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 595  
596 596  
597 597  ==== 2.3.3.1 Battery Info ====
598 598  
555 +Check the battery voltage for SN50v3.
599 599  
600 -Check the battery voltage for SN50v3-LB.
601 -
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
... ... @@ -606,18 +606,16 @@
606 606  
607 607  ==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
609 609  
610 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
611 611  
612 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
613 613  
614 -(% style="color:blue" %)**Connection:**
615 -
616 616  [[image:image-20230512180718-8.png||height="538" width="647"]]
617 617  
572 +**Example**:
618 618  
619 -(% style="color:blue" %)**Example**:
620 -
621 621  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
622 622  
623 623  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -627,7 +627,6 @@
627 627  
628 628  ==== 2.3.3.3 Digital Input ====
629 629  
630 -
631 631  The digital input for pin PB15,
632 632  
633 633  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -635,61 +635,51 @@
635 635  
636 636  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
637 637  (((
638 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
639 -
640 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
641 -
642 -
590 +Note:The maximum voltage input supports 3.6V.
643 643  )))
644 644  
593 +(% class="wikigeneratedid" %)
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646 646  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
647 647  
648 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
649 649  
650 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
651 -
652 652  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
653 653  
654 654  
655 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
656 -
657 -
658 658  ==== 2.3.3.5 Digital Interrupt ====
659 659  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
660 660  
661 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
662 662  
663 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
664 664  
665 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
666 666  
667 -
668 -(% style="color:blue" %)**Example to use with door sensor :**
669 -
670 670  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
671 671  
672 672  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
673 673  
674 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
675 675  
619 +**~ Below is the installation example:**
676 676  
677 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
678 678  
679 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
680 -
681 681  * (((
682 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
683 683  )))
684 684  * (((
685 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
686 686  )))
687 687  
688 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
689 689  
690 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
691 691  
692 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
693 693  
694 694  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
695 695  
... ... @@ -699,33 +699,29 @@
699 699  
700 700  The command is:
701 701  
702 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703 703  
704 704  Below shows some screen captures in TTN V3:
705 705  
706 706  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
707 707  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
708 708  
709 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
710 -
711 711  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
712 712  
713 713  
714 714  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
715 715  
716 -
717 717  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
718 718  
719 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
720 720  
721 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
722 722  
723 -
724 724  Below is the connection to SHT20/ SHT31. The connection is as below:
725 725  
726 -[[image:image-20230513103633-3.png||height="448" width="716"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
727 727  
728 -
729 729  The device will be able to get the I2C sensor data now and upload to IoT Server.
730 730  
731 731  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -743,26 +743,20 @@
743 743  
744 744  ==== 2.3.3.7  ​Distance Reading ====
745 745  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
746 746  
747 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
748 748  
749 -
750 750  ==== 2.3.3.8 Ultrasonic Sensor ====
751 751  
752 -
753 753  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
754 754  
755 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 756  
757 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
758 -
759 759  The picture below shows the connection:
760 760  
761 -[[image:image-20230512173903-6.png||height="596" width="715"]]
762 762  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
763 763  
764 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 -
766 766  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
767 767  
768 768  **Example:**
... ... @@ -769,41 +769,50 @@
769 769  
770 770  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
771 771  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
772 772  
773 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
774 774  
708 +You can see the serial output in ULT mode as below:
775 775  
776 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
777 777  
712 +**In TTN V3 server:**
778 778  
779 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
780 780  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
781 781  
782 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
783 783  
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
721 +
722 +
723 +==== 2.3.3.10  +5V Output ====
724 +
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
726 +
784 784  The 5V output time can be controlled by AT Command.
785 785  
786 -(% style="color:blue" %)**AT+5VT=1000**
729 +**AT+5VT=1000**
787 787  
788 788  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
789 789  
790 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
791 791  
792 792  
736 +
793 793  ==== 2.3.3.11  BH1750 Illumination Sensor ====
794 794  
795 -
796 796  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
797 797  
798 -[[image:image-20230512172447-4.png||height="416" width="712"]]
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
799 799  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
800 800  
801 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
802 802  
803 -
804 804  ==== 2.3.3.12  Working MOD ====
805 805  
806 -
807 807  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
808 808  
809 809  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -816,9 +816,6 @@
816 816  * 3: MOD4
817 817  * 4: MOD5
818 818  * 5: MOD6
819 -* 6: MOD7
820 -* 7: MOD8
821 -* 8: MOD9
822 822  
823 823  == 2.4 Payload Decoder file ==
824 824  
... ... @@ -827,9 +827,10 @@
827 827  
828 828  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
829 829  
830 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
831 831  
832 832  
771 +
833 833  == 2.5 Frequency Plans ==
834 834  
835 835  
... ... @@ -865,7 +865,7 @@
865 865  == 3.3 Commands special design for SN50v3-LB ==
866 866  
867 867  
868 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
869 869  
870 870  
871 871  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -898,29 +898,28 @@
898 898  
899 899  === 3.3.2 Get Device Status ===
900 900  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
901 901  
902 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
903 903  
904 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
905 905  
906 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
907 907  
847 +=== 3.3.7 Set Interrupt Mode ===
908 908  
909 -=== 3.3.3 Set Interrupt Mode ===
910 910  
911 -
912 912  Feature, Set Interrupt mode for GPIO_EXIT.
913 913  
914 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
915 915  
916 916  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
917 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
918 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
919 919  0
920 920  OK
921 921  the mode is 0 =Disable Interrupt
922 922  )))
923 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
924 924  Set Transmit Interval
925 925  0. (Disable Interrupt),
926 926  ~1. (Trigger by rising and falling edge)
... ... @@ -927,11 +927,6 @@
927 927  2. (Trigger by falling edge)
928 928  3. (Trigger by rising edge)
929 929  )))|(% style="width:157px" %)OK
930 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
931 -Set Transmit Interval
932 -trigger by rising edge.
933 -)))|(% style="width:157px" %)OK
934 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
935 935  
936 936  (% style="color:blue" %)**Downlink Command: 0x06**
937 937  
... ... @@ -939,115 +939,9 @@
939 939  
940 940  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
941 941  
942 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
943 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
944 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
945 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
946 946  
947 -=== 3.3.4 Set Power Output Duration ===
948 -
949 -
950 -Control the output duration 5V . Before each sampling, device will
951 -
952 -~1. first enable the power output to external sensor,
953 -
954 -2. keep it on as per duration, read sensor value and construct uplink payload
955 -
956 -3. final, close the power output.
957 -
958 -(% style="color:blue" %)**AT Command: AT+5VT**
959 -
960 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
961 -|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
962 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
963 -500(default)
964 -OK
965 -)))
966 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
967 -Close after a delay of 1000 milliseconds.
968 -)))|(% style="width:157px" %)OK
969 -
970 -(% style="color:blue" %)**Downlink Command: 0x07**
971 -
972 -Format: Command Code (0x07) followed by 2 bytes.
973 -
974 -The first and second bytes are the time to turn on.
975 -
976 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
977 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
978 -
979 -=== 3.3.5 Set Weighing parameters ===
980 -
981 -
982 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
983 -
984 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
985 -
986 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
987 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
988 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
989 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
990 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
991 -
992 -(% style="color:blue" %)**Downlink Command: 0x08**
993 -
994 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
995 -
996 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
997 -
998 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
999 -
1000 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1001 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1002 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1003 -
1004 -=== 3.3.6 Set Digital pulse count value ===
1005 -
1006 -
1007 -Feature: Set the pulse count value.
1008 -
1009 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1010 -
1011 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1012 -
1013 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1014 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1015 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1016 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1017 -
1018 -(% style="color:blue" %)**Downlink Command: 0x09**
1019 -
1020 -Format: Command Code (0x09) followed by 5 bytes.
1021 -
1022 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1023 -
1024 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1025 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1026 -
1027 -=== 3.3.7 Set Workmode ===
1028 -
1029 -
1030 -Feature: Switch working mode.
1031 -
1032 -(% style="color:blue" %)**AT Command: AT+MOD**
1033 -
1034 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1035 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1036 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1037 -OK
1038 -)))
1039 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1040 -OK
1041 -Attention:Take effect after ATZ
1042 -)))
1043 -
1044 -(% style="color:blue" %)**Downlink Command: 0x0A**
1045 -
1046 -Format: Command Code (0x0A) followed by 1 bytes.
1047 -
1048 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1049 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1050 -
1051 1051  = 4. Battery & Power Consumption =
1052 1052  
1053 1053  
... ... @@ -1060,16 +1060,17 @@
1060 1060  
1061 1061  
1062 1062  (% class="wikigeneratedid" %)
1063 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1064 1064  
1065 1065  * Change Frequency band/ region.
1066 1066  * Update with new features.
1067 1067  * Fix bugs.
1068 1068  
1069 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1070 1070  
1071 -**Methods to Update Firmware:**
1072 1072  
899 +Methods to Update Firmware:
900 +
1073 1073  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1074 1074  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1075 1075  
... ... @@ -1077,10 +1077,10 @@
1077 1077  
1078 1078  == 6.1 Where can i find source code of SN50v3-LB? ==
1079 1079  
1080 -
1081 1081  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1082 1082  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1083 1083  
911 +
1084 1084  = 7. Order Info =
1085 1085  
1086 1086  
... ... @@ -1106,7 +1106,6 @@
1106 1106  
1107 1107  = 8. ​Packing Info =
1108 1108  
1109 -
1110 1110  (% style="color:#037691" %)**Package Includes**:
1111 1111  
1112 1112  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1122,5 +1122,4 @@
1122 1122  
1123 1123  
1124 1124  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1125 -
1126 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0