<
From version < 44.5 >
edited by Saxer Lin
on 2023/05/23 17:48
To version < 43.51 >
edited by Xiaoling
on 2023/05/16 15:51
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -41,7 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -139,7 +139,7 @@
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -== 1.9 Hole Option ==
139 +== Hole Option ==
143 143  
144 144  
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -224,7 +224,7 @@
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
... ... @@ -280,22 +280,19 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 284  
285 285  For example:
286 286  
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 +1. All modes share the same Payload Explanation from HERE.
291 +1. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -2. All modes share the same Payload Explanation from HERE.
295 -
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 299  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 300  
301 301  
... ... @@ -302,7 +302,7 @@
302 302  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 303  
304 304  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
306 306  |**Value**|Bat|(% style="width:191px" %)(((
307 307  Temperature(DS18B20)(PC13)
308 308  )))|(% style="width:78px" %)(((
... ... @@ -318,6 +318,7 @@
318 318  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319 319  
320 320  
315 +
321 321  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 322  
323 323  
... ... @@ -324,7 +324,7 @@
324 324  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
322 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 328  |**Value**|BAT|(% style="width:196px" %)(((
329 329  Temperature(DS18B20)(PC13)
330 330  )))|(% style="width:87px" %)(((
... ... @@ -333,8 +333,7 @@
333 333  Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 335  Distance measure by:1) LIDAR-Lite V3HP
336 -Or
337 -2) Ultrasonic Sensor
331 +Or 2) Ultrasonic Sensor
338 338  )))|(% style="width:117px" %)Reserved
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -347,7 +347,7 @@
347 347  
348 348  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349 349  
350 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
344 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
351 351  
352 352  [[image:image-20230512173903-6.png||height="596" width="715"]]
353 353  
... ... @@ -373,7 +373,7 @@
373 373  
374 374  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
375 375  
376 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 377  
378 378  [[image:image-20230512180609-7.png||height="555" width="802"]]
379 379  
... ... @@ -380,7 +380,7 @@
380 380  
381 381  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
382 382  
383 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
377 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 384  
385 385  [[image:image-20230513105207-4.png||height="469" width="802"]]
386 386  
... ... @@ -393,7 +393,7 @@
393 393  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
394 394  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
395 395  **Size(bytes)**
396 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
397 397  |**Value**|(% style="width:68px" %)(((
398 398  ADC1(PA4)
399 399  )))|(% style="width:75px" %)(((
... ... @@ -429,10 +429,10 @@
429 429  
430 430  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
431 431  
432 -
433 433  [[image:image-20230513134006-1.png||height="559" width="736"]]
434 434  
435 435  
429 +
436 436  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
437 437  
438 438  
... ... @@ -440,18 +440,15 @@
440 440  
441 441  Each HX711 need to be calibrated before used. User need to do below two steps:
442 442  
443 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
437 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
445 445  1. (((
446 446  Weight has 4 bytes, the unit is g.
447 -
448 -
449 -
450 450  )))
451 451  
452 452  For example:
453 453  
454 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
445 +**AT+GETSENSORVALUE =0**
455 455  
456 456  Response:  Weight is 401 g
457 457  
... ... @@ -462,11 +462,13 @@
462 462  **Size(bytes)**
463 463  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
464 464  |**Value**|BAT|(% style="width:193px" %)(((
465 -Temperature(DS18B20)(PC13)
456 +Temperature(DS18B20)
457 +(PC13)
466 466  )))|(% style="width:85px" %)(((
467 467  ADC(PA4)
468 468  )))|(% style="width:186px" %)(((
469 -Digital in(PB15) & Digital Interrupt(PA8)
461 +Digital in(PB15) &
462 +Digital Interrupt(PA8)
470 470  )))|(% style="width:100px" %)Weight
471 471  
472 472  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -482,11 +482,10 @@
482 482  
483 483  [[image:image-20230512181814-9.png||height="543" width="697"]]
484 484  
485 -
486 486  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 487  
488 488  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
481 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 490  |**Value**|BAT|(% style="width:256px" %)(((
491 491  Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:108px" %)(((
... ... @@ -500,6 +500,7 @@
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 501  
502 502  
495 +
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
505 505  
... ... @@ -525,7 +525,7 @@
525 525  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 526  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 529  |**Value**|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
... ... @@ -548,19 +548,19 @@
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 549  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 552  |**Value**|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
546 +Temperature1(DS18B20)
547 +(PC13)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
549 +Temperature2(DS18B20)
550 +(PB9)
558 558  )))|(((
559 559  Digital Interrupt
560 560  (PB15)
561 561  )))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
555 +Temperature3(DS18B20)
556 +(PB8)
564 564  )))|(% style="width:78px" %)(((
565 565  Count1(PA8)
566 566  )))|(% style="width:78px" %)(((
... ... @@ -594,13 +594,13 @@
594 594  
595 595  The payload decoder function for TTN V3 are here:
596 596  
597 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
590 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 598  
599 599  
600 600  ==== 2.3.3.1 Battery Info ====
601 601  
602 602  
603 -Check the battery voltage for SN50v3-LB.
596 +Check the battery voltage for SN50v3.
604 604  
605 605  Ex1: 0x0B45 = 2885mV
606 606  
... ... @@ -654,7 +654,6 @@
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
657 -
658 658  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659 659  
660 660  
... ... @@ -661,7 +661,7 @@
661 661  ==== 2.3.3.5 Digital Interrupt ====
662 662  
663 663  
664 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
656 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
665 665  
666 666  (% style="color:blue" %)** Interrupt connection method:**
667 667  
... ... @@ -674,18 +674,18 @@
674 674  
675 675  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
676 676  
677 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
669 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
678 678  
679 679  
680 680  (% style="color:blue" %)**Below is the installation example:**
681 681  
682 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
683 683  
684 684  * (((
685 -One pin to SN50v3-LB's PA8 pin
677 +One pin to SN50_v3's PA8 pin
686 686  )))
687 687  * (((
688 -The other pin to SN50v3-LB's VDD pin
680 +The other pin to SN50_v3's VDD pin
689 689  )))
690 690  
691 691  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -702,7 +702,7 @@
702 702  
703 703  The command is:
704 704  
705 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
697 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706 706  
707 707  Below shows some screen captures in TTN V3:
708 708  
... ... @@ -709,7 +709,7 @@
709 709  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
710 710  
711 711  
712 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
713 713  
714 714  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
715 715  
... ... @@ -721,14 +721,13 @@
721 721  
722 722  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
723 723  
724 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
716 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
725 725  
726 -
727 727  Below is the connection to SHT20/ SHT31. The connection is as below:
728 728  
720 +
729 729  [[image:image-20230513103633-3.png||height="448" width="716"]]
730 730  
731 -
732 732  The device will be able to get the I2C sensor data now and upload to IoT Server.
733 733  
734 734  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -755,7 +755,7 @@
755 755  
756 756  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
757 757  
758 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
749 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 759  
760 760  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
761 761  
... ... @@ -764,7 +764,7 @@
764 764  [[image:image-20230512173903-6.png||height="596" width="715"]]
765 765  
766 766  
767 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
758 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
768 768  
769 769  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
770 770  
... ... @@ -776,13 +776,13 @@
776 776  ==== 2.3.3.9  Battery Output - BAT pin ====
777 777  
778 778  
779 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
770 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
780 780  
781 781  
782 782  ==== 2.3.3.10  +5V Output ====
783 783  
784 784  
785 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
776 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
786 786  
787 787  The 5V output time can be controlled by AT Command.
788 788  
... ... @@ -790,7 +790,7 @@
790 790  
791 791  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
792 792  
793 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
784 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
794 794  
795 795  
796 796  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -824,6 +824,7 @@
824 824  * 8: MOD9
825 825  
826 826  
818 +
827 827  == 2.4 Payload Decoder file ==
828 828  
829 829  
... ... @@ -854,6 +854,7 @@
854 854  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
855 855  
856 856  
849 +
857 857  == 3.2 General Commands ==
858 858  
859 859  
... ... @@ -870,7 +870,7 @@
870 870  == 3.3 Commands special design for SN50v3-LB ==
871 871  
872 872  
873 -These commands only valid for SN50v3-LB, as below:
866 +These commands only valid for S31x-LB, as below:
874 874  
875 875  
876 876  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -901,20 +901,17 @@
901 901  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 902  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903 903  
904 -
905 905  === 3.3.2 Get Device Status ===
906 906  
907 -
908 908  Send a LoRaWAN downlink to ask the device to send its status.
909 909  
910 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
901 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
911 911  
912 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
903 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
913 913  
914 914  
915 915  === 3.3.3 Set Interrupt Mode ===
916 916  
917 -
918 918  Feature, Set Interrupt mode for GPIO_EXIT.
919 919  
920 920  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -935,6 +935,7 @@
935 935  )))|(% style="width:157px" %)OK
936 936  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
937 937  Set Transmit Interval
928 +
938 938  trigger by rising edge.
939 939  )))|(% style="width:157px" %)OK
940 940  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -950,10 +950,8 @@
950 950  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
951 951  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
952 952  
953 -
954 954  === 3.3.4 Set Power Output Duration ===
955 955  
956 -
957 957  Control the output duration 5V . Before each sampling, device will
958 958  
959 959  ~1. first enable the power output to external sensor,
... ... @@ -983,10 +983,8 @@
983 983  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
984 984  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
985 985  
986 -
987 987  === 3.3.5 Set Weighing parameters ===
988 988  
989 -
990 990  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
991 991  
992 992  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1009,10 +1009,8 @@
1009 1009  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1010 1010  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1011 1011  
1012 -
1013 1013  === 3.3.6 Set Digital pulse count value ===
1014 1014  
1015 -
1016 1016  Feature: Set the pulse count value.
1017 1017  
1018 1018  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1033,10 +1033,8 @@
1033 1033  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1034 1034  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1035 1035  
1036 -
1037 1037  === 3.3.7 Set Workmode ===
1038 1038  
1039 -
1040 1040  Feature: Switch working mode.
1041 1041  
1042 1042  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1058,7 +1058,6 @@
1058 1058  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1059 1059  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1060 1060  
1061 -
1062 1062  = 4. Battery & Power Consumption =
1063 1063  
1064 1064  
... ... @@ -1071,29 +1071,27 @@
1071 1071  
1072 1072  
1073 1073  (% class="wikigeneratedid" %)
1074 -**User can change firmware SN50v3-LB to:**
1056 +User can change firmware SN50v3-LB to:
1075 1075  
1076 1076  * Change Frequency band/ region.
1077 1077  * Update with new features.
1078 1078  * Fix bugs.
1079 1079  
1080 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1062 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1081 1081  
1082 -**Methods to Update Firmware:**
1083 1083  
1065 +Methods to Update Firmware:
1066 +
1084 1084  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 1085  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1086 1086  
1087 -
1088 1088  = 6. FAQ =
1089 1089  
1090 1090  == 6.1 Where can i find source code of SN50v3-LB? ==
1091 1091  
1092 -
1093 1093  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1094 1094  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1095 1095  
1096 -
1097 1097  = 7. Order Info =
1098 1098  
1099 1099  
... ... @@ -1117,10 +1117,8 @@
1117 1117  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1118 1118  * (% style="color:red" %)**NH**(%%): No Hole
1119 1119  
1120 -
1121 1121  = 8. ​Packing Info =
1122 1122  
1123 -
1124 1124  (% style="color:#037691" %)**Package Includes**:
1125 1125  
1126 1126  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1132,7 +1132,6 @@
1132 1132  * Package Size / pcs : cm
1133 1133  * Weight / pcs : g
1134 1134  
1135 -
1136 1136  = 9. Support =
1137 1137  
1138 1138  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0