<
From version < 44.4 >
edited by Xiaoling
on 2023/05/18 09:18
To version < 43.45 >
edited by Xiaoling
on 2023/05/16 15:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -227,7 +227,7 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
... ... @@ -283,22 +283,21 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 +1. All modes share the same Payload Explanation from HERE.
297 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 298  
299 -3. By default, the device will send an uplink message every 20 minutes.
300 300  
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 304  
... ... @@ -305,7 +305,7 @@
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 307  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
309 309  |**Value**|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
... ... @@ -321,6 +321,7 @@
321 321  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322 322  
323 323  
323 +
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 326  
... ... @@ -327,7 +327,7 @@
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 331  |**Value**|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
... ... @@ -336,8 +336,7 @@
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 338  Distance measure by:1) LIDAR-Lite V3HP
339 -Or
340 -2) Ultrasonic Sensor
339 +Or 2) Ultrasonic Sensor
341 341  )))|(% style="width:117px" %)Reserved
342 342  
343 343  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -350,7 +350,7 @@
350 350  
351 351  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 352  
353 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
352 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
354 354  
355 355  [[image:image-20230512173903-6.png||height="596" width="715"]]
356 356  
... ... @@ -376,7 +376,7 @@
376 376  
377 377  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
378 378  
379 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
380 380  
381 381  [[image:image-20230512180609-7.png||height="555" width="802"]]
382 382  
... ... @@ -383,7 +383,7 @@
383 383  
384 384  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
385 385  
386 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
387 387  
388 388  [[image:image-20230513105207-4.png||height="469" width="802"]]
389 389  
... ... @@ -396,7 +396,7 @@
396 396  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
397 397  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
398 398  **Size(bytes)**
399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 400  |**Value**|(% style="width:68px" %)(((
401 401  ADC1(PA4)
402 402  )))|(% style="width:75px" %)(((
... ... @@ -432,10 +432,10 @@
432 432  
433 433  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
434 434  
435 -
436 436  [[image:image-20230513134006-1.png||height="559" width="736"]]
437 437  
438 438  
437 +
439 439  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
440 440  
441 441  
... ... @@ -443,18 +443,15 @@
443 443  
444 444  Each HX711 need to be calibrated before used. User need to do below two steps:
445 445  
446 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
447 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
445 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
446 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 448  1. (((
449 449  Weight has 4 bytes, the unit is g.
450 -
451 -
452 -
453 453  )))
454 454  
455 455  For example:
456 456  
457 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
453 +**AT+GETSENSORVALUE =0**
458 458  
459 459  Response:  Weight is 401 g
460 460  
... ... @@ -465,11 +465,13 @@
465 465  **Size(bytes)**
466 466  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 467  |**Value**|BAT|(% style="width:193px" %)(((
468 -Temperature(DS18B20)(PC13)
464 +Temperature(DS18B20)
465 +(PC13)
469 469  )))|(% style="width:85px" %)(((
470 470  ADC(PA4)
471 471  )))|(% style="width:186px" %)(((
472 -Digital in(PB15) & Digital Interrupt(PA8)
469 +Digital in(PB15) &
470 +Digital Interrupt(PA8)
473 473  )))|(% style="width:100px" %)Weight
474 474  
475 475  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -485,11 +485,10 @@
485 485  
486 486  [[image:image-20230512181814-9.png||height="543" width="697"]]
487 487  
488 -
489 489  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 490  
491 491  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 493  |**Value**|BAT|(% style="width:256px" %)(((
494 494  Temperature(DS18B20)(PC13)
495 495  )))|(% style="width:108px" %)(((
... ... @@ -503,6 +503,7 @@
503 503  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504 504  
505 505  
503 +
506 506  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507 507  
508 508  
... ... @@ -528,7 +528,7 @@
528 528  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 529  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 530  **Size(bytes)**
531 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 532  |**Value**|BAT|(% style="width:207px" %)(((
533 533  Temperature(DS18B20)
534 534  (PC13)
... ... @@ -551,19 +551,19 @@
551 551  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 552  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 553  **Size(bytes)**
554 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 555  |**Value**|BAT|(((
556 -Temperature
557 -(DS18B20)(PC13)
554 +Temperature1(DS18B20)
555 +(PC13)
558 558  )))|(((
559 -Temperature2
560 -(DS18B20)(PB9)
557 +Temperature2(DS18B20)
558 +(PB9)
561 561  )))|(((
562 562  Digital Interrupt
563 563  (PB15)
564 564  )))|(% style="width:193px" %)(((
565 -Temperature3
566 -(DS18B20)(PB8)
563 +Temperature3(DS18B20)
564 +(PB8)
567 567  )))|(% style="width:78px" %)(((
568 568  Count1(PA8)
569 569  )))|(% style="width:78px" %)(((
... ... @@ -597,13 +597,13 @@
597 597  
598 598  The payload decoder function for TTN V3 are here:
599 599  
600 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601 601  
602 602  
603 603  ==== 2.3.3.1 Battery Info ====
604 604  
605 605  
606 -Check the battery voltage for SN50v3-LB.
604 +Check the battery voltage for SN50v3.
607 607  
608 608  Ex1: 0x0B45 = 2885mV
609 609  
... ... @@ -621,7 +621,6 @@
621 621  
622 622  [[image:image-20230512180718-8.png||height="538" width="647"]]
623 623  
624 -
625 625  (% style="color:blue" %)**Example**:
626 626  
627 627  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -633,7 +633,6 @@
633 633  
634 634  ==== 2.3.3.3 Digital Input ====
635 635  
636 -
637 637  The digital input for pin PB15,
638 638  
639 639  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -643,14 +643,11 @@
643 643  (((
644 644  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
645 645  
646 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
647 -
648 -
642 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
649 649  )))
650 650  
651 651  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
652 652  
653 -
654 654  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
655 655  
656 656  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -657,20 +657,17 @@
657 657  
658 658  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
659 659  
653 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
660 660  
661 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
662 662  
663 -
664 664  ==== 2.3.3.5 Digital Interrupt ====
665 665  
658 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
666 666  
667 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
668 -
669 669  (% style="color:blue" %)** Interrupt connection method:**
670 670  
671 671  [[image:image-20230513105351-5.png||height="147" width="485"]]
672 672  
673 -
674 674  (% style="color:blue" %)**Example to use with door sensor :**
675 675  
676 676  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -677,23 +677,22 @@
677 677  
678 678  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
679 679  
680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
670 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
681 681  
672 +(% style="color:blue" %)** Below is the installation example:**
682 682  
683 -(% style="color:blue" %)**Below is the installation example:**
674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
684 684  
685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
686 -
687 687  * (((
688 -One pin to SN50v3-LB's PA8 pin
677 +One pin to SN50_v3's PA8 pin
689 689  )))
690 690  * (((
691 -The other pin to SN50v3-LB's VDD pin
680 +The other pin to SN50_v3's VDD pin
692 692  )))
693 693  
694 694  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
695 695  
696 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
685 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
697 697  
698 698  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
699 699  
... ... @@ -705,33 +705,30 @@
705 705  
706 706  The command is:
707 707  
708 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
697 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
709 709  
710 710  Below shows some screen captures in TTN V3:
711 711  
712 712  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
713 713  
703 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
714 714  
715 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
716 -
717 717  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
718 718  
719 719  
720 720  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
721 721  
722 -
723 723  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
724 724  
725 725  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
726 726  
727 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
714 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
728 728  
729 -
730 730  Below is the connection to SHT20/ SHT31. The connection is as below:
731 731  
718 +
732 732  [[image:image-20230513103633-3.png||height="448" width="716"]]
733 733  
734 -
735 735  The device will be able to get the I2C sensor data now and upload to IoT Server.
736 736  
737 737  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -749,16 +749,14 @@
749 749  
750 750  ==== 2.3.3.7  ​Distance Reading ====
751 751  
752 -
753 753  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
754 754  
755 755  
756 756  ==== 2.3.3.8 Ultrasonic Sensor ====
757 757  
758 -
759 759  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
760 760  
761 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
745 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
762 762  
763 763  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
764 764  
... ... @@ -766,9 +766,8 @@
766 766  
767 767  [[image:image-20230512173903-6.png||height="596" width="715"]]
768 768  
753 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 769  
770 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 -
772 772  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
773 773  
774 774  **Example:**
... ... @@ -776,17 +776,16 @@
776 776  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
777 777  
778 778  
762 +
779 779  ==== 2.3.3.9  Battery Output - BAT pin ====
780 780  
765 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
781 781  
782 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
783 783  
784 -
785 785  ==== 2.3.3.10  +5V Output ====
786 786  
770 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
787 787  
788 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
789 -
790 790  The 5V output time can be controlled by AT Command.
791 791  
792 792  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -793,23 +793,21 @@
793 793  
794 794  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
795 795  
796 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
778 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
797 797  
798 798  
781 +
799 799  ==== 2.3.3.11  BH1750 Illumination Sensor ====
800 800  
801 -
802 802  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
803 803  
804 804  [[image:image-20230512172447-4.png||height="416" width="712"]]
805 805  
806 -
807 807  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
808 808  
809 809  
810 810  ==== 2.3.3.12  Working MOD ====
811 811  
812 -
813 813  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
814 814  
815 815  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -827,7 +827,6 @@
827 827  * 8: MOD9
828 828  
829 829  
830 -
831 831  == 2.4 Payload Decoder file ==
832 832  
833 833  
... ... @@ -838,6 +838,7 @@
838 838  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
839 839  
840 840  
820 +
841 841  == 2.5 Frequency Plans ==
842 842  
843 843  
... ... @@ -857,8 +857,6 @@
857 857  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
858 858  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
859 859  
860 -
861 -
862 862  == 3.2 General Commands ==
863 863  
864 864  
... ... @@ -875,12 +875,11 @@
875 875  == 3.3 Commands special design for SN50v3-LB ==
876 876  
877 877  
878 -These commands only valid for SN50v3-LB, as below:
856 +These commands only valid for S31x-LB, as below:
879 879  
880 880  
881 881  === 3.3.1 Set Transmit Interval Time ===
882 882  
883 -
884 884  Feature: Change LoRaWAN End Node Transmit Interval.
885 885  
886 886  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -907,20 +907,17 @@
907 907  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
908 908  
909 909  
910 -
911 911  === 3.3.2 Get Device Status ===
912 912  
913 -
914 914  Send a LoRaWAN downlink to ask the device to send its status.
915 915  
916 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
891 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
917 917  
918 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
893 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
919 919  
920 920  
921 921  === 3.3.3 Set Interrupt Mode ===
922 922  
923 -
924 924  Feature, Set Interrupt mode for GPIO_EXIT.
925 925  
926 926  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -941,6 +941,7 @@
941 941  )))|(% style="width:157px" %)OK
942 942  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
943 943  Set Transmit Interval
918 +
944 944  trigger by rising edge.
945 945  )))|(% style="width:157px" %)OK
946 946  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -957,10 +957,8 @@
957 957  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
958 958  
959 959  
960 -
961 961  === 3.3.4 Set Power Output Duration ===
962 962  
963 -
964 964  Control the output duration 5V . Before each sampling, device will
965 965  
966 966  ~1. first enable the power output to external sensor,
... ... @@ -991,10 +991,8 @@
991 991  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
992 992  
993 993  
994 -
995 995  === 3.3.5 Set Weighing parameters ===
996 996  
997 -
998 998  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
999 999  
1000 1000  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1018,10 +1018,8 @@
1018 1018  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1019 1019  
1020 1020  
1021 -
1022 1022  === 3.3.6 Set Digital pulse count value ===
1023 1023  
1024 -
1025 1025  Feature: Set the pulse count value.
1026 1026  
1027 1027  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1043,10 +1043,8 @@
1043 1043  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1044 1044  
1045 1045  
1046 -
1047 1047  === 3.3.7 Set Workmode ===
1048 1048  
1049 -
1050 1050  Feature: Switch working mode.
1051 1051  
1052 1052  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1069,7 +1069,6 @@
1069 1069  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1070 1070  
1071 1071  
1072 -
1073 1073  = 4. Battery & Power Consumption =
1074 1074  
1075 1075  
... ... @@ -1082,31 +1082,27 @@
1082 1082  
1083 1083  
1084 1084  (% class="wikigeneratedid" %)
1085 -**User can change firmware SN50v3-LB to:**
1051 +User can change firmware SN50v3-LB to:
1086 1086  
1087 1087  * Change Frequency band/ region.
1088 1088  * Update with new features.
1089 1089  * Fix bugs.
1090 1090  
1091 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1057 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1092 1092  
1093 -**Methods to Update Firmware:**
1094 1094  
1060 +Methods to Update Firmware:
1061 +
1095 1095  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1096 1096  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1097 1097  
1098 -
1099 -
1100 1100  = 6. FAQ =
1101 1101  
1102 1102  == 6.1 Where can i find source code of SN50v3-LB? ==
1103 1103  
1104 -
1105 1105  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1106 1106  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1107 1107  
1108 -
1109 -
1110 1110  = 7. Order Info =
1111 1111  
1112 1112  
... ... @@ -1130,11 +1130,8 @@
1130 1130  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1131 1131  * (% style="color:red" %)**NH**(%%): No Hole
1132 1132  
1133 -
1134 -
1135 1135  = 8. ​Packing Info =
1136 1136  
1137 -
1138 1138  (% style="color:#037691" %)**Package Includes**:
1139 1139  
1140 1140  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1146,8 +1146,6 @@
1146 1146  * Package Size / pcs : cm
1147 1147  * Weight / pcs : g
1148 1148  
1149 -
1150 -
1151 1151  = 9. Support =
1152 1152  
1153 1153  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0