Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -157,7 +157,7 @@ 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,7 +165,7 @@ 165 165 166 166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 167 167 168 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -227,7 +227,7 @@ 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 ... ... @@ -283,22 +283,21 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 287 287 288 288 For example: 289 289 290 - (% style="color:blue" %)**AT+MOD=2 **(%%)290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 291 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 296 296 297 -2. All modes share the same Payload Explanation from HERE. 298 298 299 -3. By default, the device will send an uplink message every 20 minutes. 300 300 301 - 302 302 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 303 303 304 304 ... ... @@ -305,7 +305,7 @@ 305 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 309 309 |**Value**|Bat|(% style="width:191px" %)((( 310 310 Temperature(DS18B20)(PC13) 311 311 )))|(% style="width:78px" %)((( ... ... @@ -321,6 +321,7 @@ 321 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 322 322 323 323 323 + 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 326 ... ... @@ -327,7 +327,7 @@ 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |**Value**|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( ... ... @@ -336,8 +336,7 @@ 336 336 Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 338 Distance measure by:1) LIDAR-Lite V3HP 339 -Or 340 -2) Ultrasonic Sensor 339 +Or 2) Ultrasonic Sensor 341 341 )))|(% style="width:117px" %)Reserved 342 342 343 343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -350,7 +350,7 @@ 350 350 351 351 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 352 353 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**352 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 354 354 355 355 [[image:image-20230512173903-6.png||height="596" width="715"]] 356 356 ... ... @@ -376,7 +376,7 @@ 376 376 377 377 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 378 378 379 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**378 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 380 381 381 [[image:image-20230512180609-7.png||height="555" width="802"]] 382 382 ... ... @@ -383,7 +383,7 @@ 383 383 384 384 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 385 385 386 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**385 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 387 387 388 388 [[image:image-20230513105207-4.png||height="469" width="802"]] 389 389 ... ... @@ -396,7 +396,7 @@ 396 396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 397 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 398 398 **Size(bytes)** 399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 400 |**Value**|(% style="width:68px" %)((( 401 401 ADC1(PA4) 402 402 )))|(% style="width:75px" %)((( ... ... @@ -432,10 +432,10 @@ 432 432 433 433 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 434 434 435 - 436 436 [[image:image-20230513134006-1.png||height="559" width="736"]] 437 437 438 438 437 + 439 439 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 440 440 441 441 ... ... @@ -443,18 +443,15 @@ 443 443 444 444 Each HX711 need to be calibrated before used. User need to do below two steps: 445 445 446 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.447 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.445 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 446 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 448 448 1. ((( 449 449 Weight has 4 bytes, the unit is g. 450 - 451 - 452 - 453 453 ))) 454 454 455 455 For example: 456 456 457 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**453 +**AT+GETSENSORVALUE =0** 458 458 459 459 Response: Weight is 401 g 460 460 ... ... @@ -465,11 +465,13 @@ 465 465 **Size(bytes)** 466 466 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 467 |**Value**|BAT|(% style="width:193px" %)((( 468 -Temperature(DS18B20)(PC13) 464 +Temperature(DS18B20) 465 +(PC13) 469 469 )))|(% style="width:85px" %)((( 470 470 ADC(PA4) 471 471 )))|(% style="width:186px" %)((( 472 -Digital in(PB15) & Digital Interrupt(PA8) 469 +Digital in(PB15) & 470 +Digital Interrupt(PA8) 473 473 )))|(% style="width:100px" %)Weight 474 474 475 475 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -485,11 +485,10 @@ 485 485 486 486 [[image:image-20230512181814-9.png||height="543" width="697"]] 487 487 488 - 489 489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 490 490 491 491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**489 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 493 |**Value**|BAT|(% style="width:256px" %)((( 494 494 Temperature(DS18B20)(PC13) 495 495 )))|(% style="width:108px" %)((( ... ... @@ -503,6 +503,7 @@ 503 503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 504 504 505 505 503 + 506 506 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 507 507 508 508 ... ... @@ -528,7 +528,7 @@ 528 528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 529 529 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 530 530 **Size(bytes)** 531 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 532 532 |**Value**|BAT|(% style="width:207px" %)((( 533 533 Temperature(DS18B20) 534 534 (PC13) ... ... @@ -551,19 +551,19 @@ 551 551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 552 552 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 553 553 **Size(bytes)** 554 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 555 555 |**Value**|BAT|((( 556 -Temperature 557 -( DS18B20)(PC13)554 +Temperature1(DS18B20) 555 +(PC13) 558 558 )))|((( 559 -Temperature2 560 -( DS18B20)(PB9)557 +Temperature2(DS18B20) 558 +(PB9) 561 561 )))|((( 562 562 Digital Interrupt 563 563 (PB15) 564 564 )))|(% style="width:193px" %)((( 565 -Temperature3 566 -( DS18B20)(PB8)563 +Temperature3(DS18B20) 564 +(PB8) 567 567 )))|(% style="width:78px" %)((( 568 568 Count1(PA8) 569 569 )))|(% style="width:78px" %)((( ... ... @@ -597,13 +597,13 @@ 597 597 598 598 The payload decoder function for TTN V3 are here: 599 599 600 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]598 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 601 601 602 602 603 603 ==== 2.3.3.1 Battery Info ==== 604 604 605 605 606 -Check the battery voltage for SN50v3 -LB.604 +Check the battery voltage for SN50v3. 607 607 608 608 Ex1: 0x0B45 = 2885mV 609 609 ... ... @@ -621,7 +621,6 @@ 621 621 622 622 [[image:image-20230512180718-8.png||height="538" width="647"]] 623 623 624 - 625 625 (% style="color:blue" %)**Example**: 626 626 627 627 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -633,7 +633,6 @@ 633 633 634 634 ==== 2.3.3.3 Digital Input ==== 635 635 636 - 637 637 The digital input for pin PB15, 638 638 639 639 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -643,14 +643,11 @@ 643 643 ((( 644 644 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 645 645 646 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 647 - 648 - 642 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 649 649 ))) 650 650 651 651 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 652 652 653 - 654 654 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 655 655 656 656 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -657,20 +657,17 @@ 657 657 658 658 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 659 659 653 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 660 660 661 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 662 662 663 - 664 664 ==== 2.3.3.5 Digital Interrupt ==== 665 665 658 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 666 666 667 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 668 - 669 669 (% style="color:blue" %)** Interrupt connection method:** 670 670 671 671 [[image:image-20230513105351-5.png||height="147" width="485"]] 672 672 673 - 674 674 (% style="color:blue" %)**Example to use with door sensor :** 675 675 676 676 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -677,23 +677,22 @@ 677 677 678 678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 679 679 680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.670 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 681 681 672 +(% style="color:blue" %)** Below is the installation example:** 682 682 683 - (%style="color:blue"%)**Belowisthe installationexample:**674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 684 684 685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 686 - 687 687 * ((( 688 -One pin to SN50v3 -LB's PA8 pin677 +One pin to SN50_v3's PA8 pin 689 689 ))) 690 690 * ((( 691 -The other pin to SN50v3 -LB's VDD pin680 +The other pin to SN50_v3's VDD pin 692 692 ))) 693 693 694 694 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 695 695 696 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.685 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 697 697 698 698 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 699 699 ... ... @@ -705,33 +705,30 @@ 705 705 706 706 The command is: 707 707 708 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 697 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 709 709 710 710 Below shows some screen captures in TTN V3: 711 711 712 712 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 713 713 703 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 714 714 715 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 716 - 717 717 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 718 718 719 719 720 720 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 721 721 722 - 723 723 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 724 724 725 725 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 726 726 727 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**714 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 728 728 729 - 730 730 Below is the connection to SHT20/ SHT31. The connection is as below: 731 731 718 + 732 732 [[image:image-20230513103633-3.png||height="448" width="716"]] 733 733 734 - 735 735 The device will be able to get the I2C sensor data now and upload to IoT Server. 736 736 737 737 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -749,16 +749,14 @@ 749 749 750 750 ==== 2.3.3.7 Distance Reading ==== 751 751 752 - 753 753 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 754 754 755 755 756 756 ==== 2.3.3.8 Ultrasonic Sensor ==== 757 757 758 - 759 759 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 760 760 761 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.745 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 762 762 763 763 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 764 764 ... ... @@ -766,9 +766,8 @@ 766 766 767 767 [[image:image-20230512173903-6.png||height="596" width="715"]] 768 768 753 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 769 769 770 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 771 - 772 772 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 773 773 774 774 **Example:** ... ... @@ -776,17 +776,16 @@ 776 776 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 777 777 778 778 762 + 779 779 ==== 2.3.3.9 Battery Output - BAT pin ==== 780 780 765 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 781 781 782 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 783 783 784 - 785 785 ==== 2.3.3.10 +5V Output ==== 786 786 770 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 787 787 788 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 789 - 790 790 The 5V output time can be controlled by AT Command. 791 791 792 792 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -793,23 +793,21 @@ 793 793 794 794 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 795 795 796 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.778 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 797 797 798 798 781 + 799 799 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 800 800 801 - 802 802 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 803 803 804 804 [[image:image-20230512172447-4.png||height="416" width="712"]] 805 805 806 - 807 807 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 808 808 809 809 810 810 ==== 2.3.3.12 Working MOD ==== 811 811 812 - 813 813 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 814 814 815 815 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -827,7 +827,6 @@ 827 827 * 8: MOD9 828 828 829 829 830 - 831 831 == 2.4 Payload Decoder file == 832 832 833 833 ... ... @@ -838,6 +838,7 @@ 838 838 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 839 839 840 840 820 + 841 841 == 2.5 Frequency Plans == 842 842 843 843 ... ... @@ -857,8 +857,6 @@ 857 857 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 858 858 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 859 859 860 - 861 - 862 862 == 3.2 General Commands == 863 863 864 864 ... ... @@ -875,12 +875,11 @@ 875 875 == 3.3 Commands special design for SN50v3-LB == 876 876 877 877 878 -These commands only valid for S N50v3-LB, as below:856 +These commands only valid for S31x-LB, as below: 879 879 880 880 881 881 === 3.3.1 Set Transmit Interval Time === 882 882 883 - 884 884 Feature: Change LoRaWAN End Node Transmit Interval. 885 885 886 886 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -907,20 +907,17 @@ 907 907 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 908 908 909 909 910 - 911 911 === 3.3.2 Get Device Status === 912 912 913 - 914 914 Send a LoRaWAN downlink to ask the device to send its status. 915 915 916 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **891 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 917 917 918 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.893 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 919 919 920 920 921 921 === 3.3.3 Set Interrupt Mode === 922 922 923 - 924 924 Feature, Set Interrupt mode for GPIO_EXIT. 925 925 926 926 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -941,6 +941,7 @@ 941 941 )))|(% style="width:157px" %)OK 942 942 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 943 943 Set Transmit Interval 918 + 944 944 trigger by rising edge. 945 945 )))|(% style="width:157px" %)OK 946 946 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -957,10 +957,8 @@ 957 957 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 958 958 959 959 960 - 961 961 === 3.3.4 Set Power Output Duration === 962 962 963 - 964 964 Control the output duration 5V . Before each sampling, device will 965 965 966 966 ~1. first enable the power output to external sensor, ... ... @@ -991,10 +991,8 @@ 991 991 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 992 992 993 993 994 - 995 995 === 3.3.5 Set Weighing parameters === 996 996 997 - 998 998 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 999 999 1000 1000 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1018,10 +1018,8 @@ 1018 1018 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1019 1019 1020 1020 1021 - 1022 1022 === 3.3.6 Set Digital pulse count value === 1023 1023 1024 - 1025 1025 Feature: Set the pulse count value. 1026 1026 1027 1027 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1043,10 +1043,8 @@ 1043 1043 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1044 1044 1045 1045 1046 - 1047 1047 === 3.3.7 Set Workmode === 1048 1048 1049 - 1050 1050 Feature: Switch working mode. 1051 1051 1052 1052 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1069,7 +1069,6 @@ 1069 1069 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1070 1070 1071 1071 1072 - 1073 1073 = 4. Battery & Power Consumption = 1074 1074 1075 1075 ... ... @@ -1082,31 +1082,27 @@ 1082 1082 1083 1083 1084 1084 (% class="wikigeneratedid" %) 1085 - **User can change firmware SN50v3-LB to:**1051 +User can change firmware SN50v3-LB to: 1086 1086 1087 1087 * Change Frequency band/ region. 1088 1088 * Update with new features. 1089 1089 * Fix bugs. 1090 1090 1091 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1057 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1092 1092 1093 -**Methods to Update Firmware:** 1094 1094 1060 +Methods to Update Firmware: 1061 + 1095 1095 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1096 1096 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1097 1097 1098 - 1099 - 1100 1100 = 6. FAQ = 1101 1101 1102 1102 == 6.1 Where can i find source code of SN50v3-LB? == 1103 1103 1104 - 1105 1105 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1106 1106 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1107 1107 1108 - 1109 - 1110 1110 = 7. Order Info = 1111 1111 1112 1112 ... ... @@ -1130,11 +1130,8 @@ 1130 1130 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1131 1131 * (% style="color:red" %)**NH**(%%): No Hole 1132 1132 1133 - 1134 - 1135 1135 = 8. Packing Info = 1136 1136 1137 - 1138 1138 (% style="color:#037691" %)**Package Includes**: 1139 1139 1140 1140 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1146,8 +1146,6 @@ 1146 1146 * Package Size / pcs : cm 1147 1147 * Weight / pcs : g 1148 1148 1149 - 1150 - 1151 1151 = 9. Support = 1152 1152 1153 1153