Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 20 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,11 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 - 49 49 (% style="color:#037691" %)**Common DC Characteristics:** 50 50 51 51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,11 +80,8 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 - 88 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 89 89 90 90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -109,8 +109,6 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 ... ... @@ -129,7 +129,7 @@ 129 129 == 1.7 Pin Definitions == 130 130 131 131 132 -[[image:image-2023051 3102034-2.png]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 133 133 134 134 135 135 == 1.8 Mechanical == ... ... @@ -144,7 +144,6 @@ 144 144 145 145 == Hole Option == 146 146 147 - 148 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 149 149 150 150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -157,7 +157,7 @@ 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,7 +165,7 @@ 165 165 166 166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 167 167 168 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -227,7 +227,7 @@ 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 ... ... @@ -283,40 +283,25 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 287 287 288 288 For example: 289 289 290 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 291 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 296 296 297 -2. All modes share the same Payload Explanation from HERE. 298 - 299 -3. By default, the device will send an uplink message every 20 minutes. 300 - 301 - 302 302 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 303 303 304 - 305 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 -|**Value**|Bat|(% style="width:191px" %)((( 310 -Temperature(DS18B20)(PC13) 311 -)))|(% style="width:78px" %)((( 312 -ADC(PA4) 313 -)))|(% style="width:216px" %)((( 314 -Digital in(PB15)&Digital Interrupt(PA8) 315 -)))|(% style="width:308px" %)((( 316 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 317 -)))|(% style="width:154px" %)((( 318 -Humidity(SHT20 or SHT31) 319 -))) 295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 320 320 321 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 322 322 ... ... @@ -323,274 +323,220 @@ 323 323 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 - 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 -|**Value**|BAT|(% style="width:196px" %)((( 332 -Temperature(DS18B20)(PC13) 333 -)))|(% style="width:87px" %)((( 334 -ADC(PA4) 335 -)))|(% style="width:189px" %)((( 336 -Digital in(PB15) & Digital Interrupt(PA8) 337 -)))|(% style="width:208px" %)((( 338 -Distance measure by:1) LIDAR-Lite V3HP 305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 +|**Value**|BAT|((( 307 +Temperature(DS18B20) 308 +)))|ADC|Digital in & Digital Interrupt|((( 309 +Distance measure by: 310 +1) LIDAR-Lite V3HP 339 339 Or 340 340 2) Ultrasonic Sensor 341 -)))| (% style="width:117px" %)Reserved313 +)))|Reserved 342 342 343 343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 344 344 317 +**Connection of LIDAR-Lite V3HP:** 345 345 346 - (% style="color:blue"%)**ConnectionfLIDAR-LiteV3HP:**319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]] 347 347 348 - [[image:image-20230512173758-5.png||height="563"width="712"]]321 +**Connection to Ultrasonic Sensor:** 349 349 323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 350 350 351 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 - 353 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 354 - 355 -[[image:image-20230512173903-6.png||height="596" width="715"]] 356 - 357 - 358 358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 359 359 360 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 361 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 -|**Value**|BAT|(% style="width:183px" %)((( 363 -Temperature(DS18B20)(PC13) 364 -)))|(% style="width:173px" %)((( 365 -Digital in(PB15) & Digital Interrupt(PA8) 366 -)))|(% style="width:84px" %)((( 367 -ADC(PA4) 368 -)))|(% style="width:323px" %)((( 327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 330 +)))|Digital in & Digital Interrupt|ADC|((( 369 369 Distance measure by:1)TF-Mini plus LiDAR 370 370 Or 371 371 2) TF-Luna LiDAR 372 -)))| (% style="width:188px" %)Distance signal strength334 +)))|Distance signal strength 373 373 374 374 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 375 375 376 - 377 377 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 378 378 379 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 380 380 381 -[[image:i mage-20230512180609-7.png||height="555"width="802"]]342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]] 382 382 383 - 384 384 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 385 385 386 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 387 387 388 -[[image:i mage-20230513105207-4.png||height="469" width="802"]]348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 389 389 350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 390 390 352 + 391 391 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 392 392 393 - 394 394 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 395 395 396 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 357 +|=((( 398 398 **Size(bytes)** 399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 -|**Value**|(% style="width:68px" %)((( 401 -ADC1(PA4) 402 -)))|(% style="width:75px" %)((( 403 -ADC2(PA5) 404 -)))|((( 405 -ADC3(PA8) 406 -)))|((( 407 -Digital Interrupt(PB15) 408 -)))|(% style="width:304px" %)((( 409 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 410 -)))|(% style="width:163px" %)((( 411 -Humidity(SHT20 or SHT31) 412 -)))|(% style="width:53px" %)Bat 359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 +Digital in(PA12)&Digital Interrupt1(PB14) 362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 413 413 414 -[[image:i mage-20230513110214-6.png]]364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 415 415 416 416 417 417 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 418 418 369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 419 419 420 - This modehas total11 bytes.Asshownbelow:371 +Hardware connection is as below, 421 421 422 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 423 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 424 -|**Value**|BAT|(% style="width:186px" %)((( 425 -Temperature1(DS18B20)(PC13) 426 -)))|(% style="width:82px" %)((( 427 -ADC(PA4) 428 -)))|(% style="width:210px" %)((( 429 -Digital in(PB15) & Digital Interrupt(PA8) 430 -)))|(% style="width:191px" %)Temperature2(DS18B20) 431 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 373 +**( Note:** 432 432 433 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 434 434 378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 435 435 436 -[[image:i mage-20230513134006-1.png||height="559" width="736"]]380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 437 437 382 +This mode has total 11 bytes. As shown below: 438 438 384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 385 +|**Value**|BAT|((( 386 +Temperature1 387 +(DS18B20) 388 +(PB3) 389 +)))|ADC|Digital in & Digital Interrupt|Temperature2 390 +(DS18B20) 391 +(PA9)|Temperature3 392 +(DS18B20) 393 +(PA10) 394 + 395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 + 397 + 439 439 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 440 440 400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 441 441 442 -[[image:image-20230512164658-2.png||height="532" width="729"]] 443 443 403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 + 444 444 Each HX711 need to be calibrated before used. User need to do below two steps: 445 445 446 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.447 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 448 448 1. ((( 449 -Weight has 4 bytes, the unit is g. 450 - 451 - 452 - 410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 453 453 ))) 454 454 455 455 For example: 456 456 457 - (% style="color:blue" %)**AT+GETSENSORVALUE=0**415 +**AT+WEIGAP =403.0** 458 458 459 459 Response: Weight is 401 g 460 460 461 461 Check the response of this command and adjust the value to match the real value for thing. 462 462 463 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 464 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 421 +|=((( 465 465 **Size(bytes)** 466 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 -|**Value**|BAT|(% style="width:193px" %)((( 468 -Temperature(DS18B20)(PC13) 469 -)))|(% style="width:85px" %)((( 470 -ADC(PA4) 471 -)))|(% style="width:186px" %)((( 472 -Digital in(PB15) & Digital Interrupt(PA8) 473 -)))|(% style="width:100px" %)Weight 423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 474 474 475 475 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 476 476 477 477 478 - 479 479 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 480 480 481 - 482 482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 483 483 484 484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 485 485 486 -[[image:i mage-20230512181814-9.png||height="543" width="697"]]435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]] 487 487 437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 488 488 489 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 490 490 491 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 -|**Value**|BAT|(% style="width:256px" %)((( 494 -Temperature(DS18B20)(PC13) 495 -)))|(% style="width:108px" %)((( 496 -ADC(PA4) 497 -)))|(% style="width:126px" %)((( 498 -Digital in(PB15) 499 -)))|(% style="width:145px" %)((( 500 -Count(PA8) 501 -))) 502 - 503 503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 504 504 505 505 506 506 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 507 507 449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 508 508 509 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 510 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 451 +|=((( 511 511 **Size(bytes)** 512 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 513 -|**Value**|BAT|(% style="width:188px" %)((( 514 -Temperature(DS18B20) 515 -(PC13) 516 -)))|(% style="width:83px" %)((( 517 -ADC(PA5) 518 -)))|(% style="width:184px" %)((( 519 -Digital Interrupt1(PA8) 520 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 +Digital in(PA12)&Digital Interrupt1(PB14) 456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 521 521 522 -[[image:image-20230513111203-7.png||height="324" width="975"]] 523 - 524 - 525 525 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 526 526 527 - 528 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 529 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 460 +|=((( 530 530 **Size(bytes)** 531 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 532 -|**Value**|BAT|(% style="width:207px" %)((( 533 -Temperature(DS18B20) 534 -(PC13) 535 -)))|(% style="width:94px" %)((( 536 -ADC1(PA4) 537 -)))|(% style="width:198px" %)((( 538 -Digital Interrupt(PB15) 539 -)))|(% style="width:84px" %)((( 540 -ADC2(PA5) 541 -)))|(% style="width:82px" %)((( 542 -ADC3(PA8) 462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 +|**Value**|BAT|Temperature(DS18B20)|((( 464 +ADC1(PA0) 465 +)))|((( 466 +Digital in 467 +& Digital Interrupt(PB14) 468 +)))|((( 469 +ADC2(PA1) 470 +)))|((( 471 +ADC3(PA4) 543 543 ))) 544 544 545 -[[image:image-202 30513111231-8.png||height="335" width="900"]]474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 546 546 547 547 548 548 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 549 549 550 - 551 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 552 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 +|=((( 553 553 **Size(bytes)** 554 -)))|= (% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 555 555 |**Value**|BAT|((( 556 -Temperature 557 -(DS18B20)(PC13) 483 +Temperature1(PB3) 558 558 )))|((( 559 -Temperature2 560 -(DS18B20)(PB9) 485 +Temperature2(PA9) 561 561 )))|((( 562 -Digital Interrupt 563 -(PB15) 564 -)))|(% style="width:193px" %)((( 565 -Temperature3 566 -(DS18B20)(PB8) 567 -)))|(% style="width:78px" %)((( 568 -Count1(PA8) 569 -)))|(% style="width:78px" %)((( 570 -Count2(PA4) 487 +Digital in 488 +& Digital Interrupt(PA4) 489 +)))|((( 490 +Temperature3(PA10) 491 +)))|((( 492 +Count1(PB14) 493 +)))|((( 494 +Count2(PB15) 571 571 ))) 572 572 573 -[[image:image-202 30513111255-9.png||height="341"width="899"]]497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 574 574 575 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**499 +**The newly added AT command is issued correspondingly:** 576 576 577 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**501 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 578 578 579 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**503 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 580 580 581 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**505 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 582 582 507 +**AT+SETCNT=aa,bb** 583 583 584 - (%style="color:blue"%)**AT+SETCNT=aa,bb**509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 585 585 586 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 587 587 588 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 589 589 590 590 591 591 === 2.3.3 Decode payload === 592 592 593 - 594 594 While using TTN V3 network, you can add the payload format to decode the payload. 595 595 596 596 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -597,14 +597,13 @@ 597 597 598 598 The payload decoder function for TTN V3 are here: 599 599 600 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]523 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 601 601 602 602 603 603 ==== 2.3.3.1 Battery Info ==== 604 604 528 +Check the battery voltage for SN50v3. 605 605 606 -Check the battery voltage for SN50v3-LB. 607 - 608 608 Ex1: 0x0B45 = 2885mV 609 609 610 610 Ex2: 0x0B49 = 2889mV ... ... @@ -612,18 +612,16 @@ 612 612 613 613 ==== 2.3.3.2 Temperature (DS18B20) ==== 614 614 537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 615 615 616 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 617 617 618 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]541 +**Connection:** 619 619 620 - (% style="color:blue"%)**Connection:**543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]] 621 621 622 - [[image:image-20230512180718-8.png||height="538" width="647"]]545 +**Example**: 623 623 624 - 625 -(% style="color:blue" %)**Example**: 626 - 627 627 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 628 628 629 629 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -633,69 +633,88 @@ 633 633 634 634 ==== 2.3.3.3 Digital Input ==== 635 635 556 +The digital input for pin PA12, 636 636 637 -The digital input for pin PB15, 558 +* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 +* When PA12 is low, the bit 1 of payload byte 6 is 0. 638 638 639 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 640 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 641 641 642 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 643 -((( 644 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 562 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 645 645 646 - (%style="color:red"%)**Note:Themaximum voltageinput supports3.6V.**564 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin. 647 647 566 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink. 567 + 568 +The ADC monitors the voltage on the PA0 line, in mV. 569 + 570 +Ex: 0x021F = 543mv, 571 + 572 +**~ Example1:** Reading an Oil Sensor (Read a resistance value): 573 + 574 + 575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 576 + 577 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 648 648 649 -))) 650 650 651 - ==== 2.3.3.4 Analogue Digital Converter (ADC) ====580 +**Steps:** 652 652 582 +1. Solder a 10K resistor between PA0 and VCC. 583 +1. Screw oil sensor's two pins to PA0 and PB4. 653 653 654 -The measuring rangeof the ADC is only about0V to 1.1V The voltageresolutionis about 0.24mv.585 +The equipment circuit is as below: 655 655 656 - When themeasured output voltageof the sensor is notthin therange of 0V and 1.1V, theoutput voltage terminalof the sensor shall bedivided The exampleinthellowing figure is toreducetheoutput voltageof the sensorby three timesIf it is necessary to reducemoretimes, calculate accordingto theformula inthe figurend connectthe correspondingresistance in series.587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]] 657 657 658 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]589 +According to above diagram: 659 659 591 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 660 660 661 - (% style="color:red" %)**Note: If the ADC type sensor needs to be powered bySN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**593 +So 662 662 595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 663 663 664 - ==== 2.3.3.5 DigitalInterrupt ====597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v 665 665 599 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm 666 666 667 - Digital InterruptreferstopinPA8, and therearedifferent trigger methods. When thereisatrigger, the SN50v3-LB will sendapackettotheserver.601 +Since the Bouy is linear resistance from 10 ~~ 70cm. 668 668 669 - (%style="color:blue"%)** Interrupt connection method:**603 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy. 670 670 671 -[[image:image-20230513105351-5.png||height="147" width="485"]] 672 672 606 +==== 2.3.3.5 Digital Interrupt ==== 673 673 674 - (% style="color:blue"%)**Example tousewithdoor sensor:**608 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 675 675 610 +**~ Interrupt connection method:** 611 + 612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 613 + 614 +**Example to use with door sensor :** 615 + 676 676 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 677 677 678 678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 679 679 680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.620 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 681 681 622 +**~ Below is the installation example:** 682 682 683 - (%style="color:blue"%)**Belowisthe installationexample:**624 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 684 684 685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 686 - 687 687 * ((( 688 -One pin to SN50 v3-LB's PA8pin627 +One pin to LSN50's PB14 pin 689 689 ))) 690 690 * ((( 691 -The other pin to SN50 v3-LB's VDDpin630 +The other pin to LSN50's VCC pin 692 692 ))) 693 693 694 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.633 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 695 695 696 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.635 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 697 697 698 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.637 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 699 699 700 700 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 701 701 ... ... @@ -705,33 +705,35 @@ 705 705 706 706 The command is: 707 707 708 - (% style="color:blue" %)**AT+INTMOD1=1**(%%)~/~/647 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 709 709 710 710 Below shows some screen captures in TTN V3: 711 711 712 712 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 713 713 653 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 714 714 715 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 716 - 717 717 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 718 718 657 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 719 719 720 - ====2.3.3.6I2CInterface(SHT20&SHT31)====659 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board. 721 721 661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 722 722 723 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 724 724 725 - Wehavemadean example to show how to use theI2Cinterfaceto connect to theSHT20/SHT31 Temperature and Humidity Sensor.664 +==== 2.3.3.6 I2C Interface (SHT20) ==== 726 726 727 - (% style="color:red"%)**Notice:DifferentI2Csensors have differentI2Ccommands set andinitiateprocess,ifuserwanttouseother I2Csensors,Userneedtore-writethesourcecodetosupportthose sensors.SHT20/ SHT31 code in SN50v3-LB will beagood reference.**666 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 728 728 668 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 729 729 670 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference. 671 + 730 730 Below is the connection to SHT20/ SHT31. The connection is as below: 731 731 732 -[[image:image-202 30513103633-3.png||height="448" width="716"]]674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 733 733 734 - 735 735 The device will be able to get the I2C sensor data now and upload to IoT Server. 736 736 737 737 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -749,26 +749,21 @@ 749 749 750 750 ==== 2.3.3.7 Distance Reading ==== 751 751 693 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 752 752 753 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 754 754 755 - 756 756 ==== 2.3.3.8 Ultrasonic Sensor ==== 757 757 698 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 758 758 759 -Th isFundamental Principles of thissensorcanbe found atthislink:[[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]700 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 760 760 761 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 762 - 763 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 764 - 765 765 The picture below shows the connection: 766 766 767 -[[image:i mage-20230512173903-6.png||height="596" width="715"]]704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]] 768 768 706 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 769 769 770 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 771 - 772 772 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 773 773 774 774 **Example:** ... ... @@ -775,41 +775,50 @@ 775 775 776 776 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 777 777 714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 778 778 779 - ==== 2.3.3.9 Battery Output-BATpin==716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 780 780 718 +You can see the serial output in ULT mode as below: 781 781 782 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.720 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 783 783 722 +**In TTN V3 server:** 784 784 785 - ==== 2.3.3.10+5VOutput===724 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 786 786 726 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 787 787 788 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.728 +==== 2.3.3.9 Battery Output - BAT pin ==== 789 789 730 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 731 + 732 + 733 +==== 2.3.3.10 +5V Output ==== 734 + 735 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 736 + 790 790 The 5V output time can be controlled by AT Command. 791 791 792 - (% style="color:blue" %)**AT+5VT=1000**739 +**AT+5VT=1000** 793 793 794 794 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 795 795 796 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.743 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 797 797 798 798 746 + 799 799 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 800 800 801 - 802 802 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 803 803 804 -[[image:image-202 30512172447-4.png||height="416" width="712"]]751 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]] 805 805 753 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 806 806 807 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 808 808 809 - 810 810 ==== 2.3.3.12 Working MOD ==== 811 811 812 - 813 813 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 814 814 815 815 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -822,12 +822,8 @@ 822 822 * 3: MOD4 823 823 * 4: MOD5 824 824 * 5: MOD6 825 -* 6: MOD7 826 -* 7: MOD8 827 -* 8: MOD9 828 828 829 829 830 - 831 831 == 2.4 Payload Decoder file == 832 832 833 833 ... ... @@ -835,30 +835,173 @@ 835 835 836 836 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 837 837 838 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]779 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 839 839 840 840 841 -== 2.5 F requencyPlans==782 +== 2.5 Datalog Feature == 842 842 843 843 844 - TheSN50v3-LBusesOTAAmode andbelowfrequencyplansbydefault.Ifuserwanttouseitthdifferentfrequencyplan,please refer theAT commandsets.785 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes. 845 845 787 + 788 +=== 2.5.1 Ways to get datalog via LoRaWAN === 789 + 790 + 791 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 792 + 793 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 794 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 795 + 796 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 797 + 798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 799 + 800 +=== 2.5.2 Unix TimeStamp === 801 + 802 + 803 +S31x-LB uses Unix TimeStamp format based on 804 + 805 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 806 + 807 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 808 + 809 +Below is the converter example 810 + 811 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 812 + 813 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 814 + 815 + 816 +=== 2.5.3 Set Device Time === 817 + 818 + 819 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 820 + 821 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 822 + 823 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 824 + 825 + 826 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 827 + 828 + 829 +The Datalog uplinks will use below payload format. 830 + 831 +**Retrieval data payload:** 832 + 833 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 834 +|=(% style="width: 80px;background-color:#D9E2F3" %)((( 835 +**Size(bytes)** 836 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 837 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 838 +[[Temp_Black>>||anchor="HTemperatureBlack:"]] 839 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 840 + 841 +**Poll message flag & Ext:** 842 + 843 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]] 844 + 845 +**No ACK Message**: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature) 846 + 847 +**Poll Message Flag**: 1: This message is a poll message reply. 848 + 849 +* Poll Message Flag is set to 1. 850 + 851 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 852 + 853 +For example, in US915 band, the max payload for different DR is: 854 + 855 +**a) DR0:** max is 11 bytes so one entry of data 856 + 857 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 858 + 859 +**c) DR2:** total payload includes 11 entries of data 860 + 861 +**d) DR3: **total payload includes 22 entries of data. 862 + 863 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 864 + 865 + 866 +**Example:** 867 + 868 +If S31x-LB has below data inside Flash: 869 + 870 +[[image:1682646494051-944.png]] 871 + 872 +If user sends below downlink command: 3160065F9760066DA705 873 + 874 +Where : Start time: 60065F97 = time 21/1/19 04:27:03 875 + 876 + Stop time: 60066DA7= time 21/1/19 05:27:03 877 + 878 + 879 +**S31x-LB will uplink this payload.** 880 + 881 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 882 + 883 +((( 884 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 885 +))) 886 + 887 +((( 888 +Where the first 11 bytes is for the first entry: 889 +))) 890 + 891 +((( 892 +7FFF089801464160065F97 893 +))) 894 + 895 +((( 896 +**Ext sensor data**=0x7FFF/100=327.67 897 +))) 898 + 899 +((( 900 +**Temp**=0x088E/100=22.00 901 +))) 902 + 903 +((( 904 +**Hum**=0x014B/10=32.6 905 +))) 906 + 907 +((( 908 +**poll message flag & Ext**=0x41,means reply data,Ext=1 909 +))) 910 + 911 +((( 912 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 913 +))) 914 + 915 + 916 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的 917 + 918 +== 2.6 Temperature Alarm Feature == 919 + 920 + 921 +S31x-LB work flow with Alarm feature. 922 + 923 + 924 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 925 + 926 + 927 +== 2.7 Frequency Plans == 928 + 929 + 930 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 931 + 846 846 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 847 847 848 848 849 -= 3. Configure S N50v3-LB =935 += 3. Configure S31x-LB = 850 850 851 851 == 3.1 Configure Methods == 852 852 853 853 854 -S N50v3-LB supports below configure method:940 +S31x-LB supports below configure method: 855 855 856 856 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 857 857 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 858 858 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 859 859 860 - 861 - 862 862 == 3.2 General Commands == 863 863 864 864 ... ... @@ -872,10 +872,10 @@ 872 872 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 873 873 874 874 875 -== 3.3 Commands special design for S N50v3-LB ==959 +== 3.3 Commands special design for S31x-LB == 876 876 877 877 878 -These commands only valid for S N50v3-LB, as below:962 +These commands only valid for S31x-LB, as below: 879 879 880 880 881 881 === 3.3.1 Set Transmit Interval Time === ... ... @@ -906,170 +906,118 @@ 906 906 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 907 907 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 908 908 909 - 910 - 911 911 === 3.3.2 Get Device Status === 912 912 913 913 914 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.996 +Send a LoRaWAN downlink to ask device send Alarm settings. 915 915 916 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **998 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 917 917 918 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.1000 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 919 919 920 920 921 -=== 3.3.3 Set InterruptMode===1003 +=== 3.3.3 Set Temperature Alarm Threshold === 922 922 1005 +* (% style="color:blue" %)**AT Command:** 923 923 924 - Feature,SetInterrupt mode forGPIO_EXIT.1007 +(% style="color:#037691" %)**AT+SHTEMP=min,max** 925 925 926 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1009 +* When min=0, and max≠0, Alarm higher than max 1010 +* When min≠0, and max=0, Alarm lower than min 1011 +* When min≠0 and max≠0, Alarm higher than max or lower than min 927 927 928 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 929 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 930 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 931 -0 932 -OK 933 -the mode is 0 =Disable Interrupt 934 -))) 935 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 936 -Set Transmit Interval 937 -0. (Disable Interrupt), 938 -~1. (Trigger by rising and falling edge) 939 -2. (Trigger by falling edge) 940 -3. (Trigger by rising edge) 941 -)))|(% style="width:157px" %)OK 942 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 943 -Set Transmit Interval 944 -trigger by rising edge. 945 -)))|(% style="width:157px" %)OK 946 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1013 +Example: 947 947 948 - (%style="color:blue"%)**DownlinkCommand:0x06**1015 + AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 949 949 950 - Format:CommandCode(0x06)followedby 3 bytes.1017 +* (% style="color:blue" %)**Downlink Payload:** 951 951 952 - Thismeanshat theinterrupt modeofthe end node is set to0x000003=3(risingedgetrigger),andthetypecodeis06.1019 +(% style="color:#037691" %)**0x(0C 01 00 1E)** (%%) ~/~/ Set AT+SHTEMP=0,30 953 953 954 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 955 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 956 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 957 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1021 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 958 958 959 959 1024 +=== 3.3.4 Set Humidity Alarm Threshold === 960 960 961 - ===3.3.4SetPowerOutputDuration===1026 +* (% style="color:blue" %)**AT Command:** 962 962 1028 +(% style="color:#037691" %)**AT+SHHUM=min,max** 963 963 964 -Control the output duration 5V . Before each sampling, device will 1030 +* When min=0, and max≠0, Alarm higher than max 1031 +* When min≠0, and max=0, Alarm lower than min 1032 +* When min≠0 and max≠0, Alarm higher than max or lower than min 965 965 966 - ~1. first enable the power output to externalsensor,1034 +Example: 967 967 968 - 2.keepitonasperduration,readsensorvalueandconstructuplink payload1036 + AT+SHHUM=70,0 ~/~/ Alarm when humidity lower than 70%. 969 969 970 - 3.final,closethe poweroutput.1038 +* (% style="color:blue" %)**Downlink Payload:** 971 971 972 -(% style="color: blue" %)**ATCommand:AT+5VT**1040 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%) ~/~/ Set AT+SHTHUM=70,0 973 973 974 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 975 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 976 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 977 -500(default) 978 -OK 979 -))) 980 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 981 -Close after a delay of 1000 milliseconds. 982 -)))|(% style="width:157px" %)OK 1042 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))** 983 983 984 -(% style="color:blue" %)**Downlink Command: 0x07** 985 985 986 - Format:CommandCode(0x07) followedby 2 bytes.1045 +=== 3.3.5 Set Alarm Interval === 987 987 988 -The first and second bytesarethetime to turnon.1047 +The shortest time of two Alarm packet. (unit: min) 989 989 990 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 991 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1049 +* (% style="color:blue" %)**AT Command:** 992 992 1051 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 993 993 1053 +* (% style="color:blue" %)**Downlink Payload:** 994 994 995 - ===3.3.5SetWeighingparameters===1055 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 996 996 997 997 998 - Feature:Workingmode5 is effective,weight initialization and weight factor settingof HX711.1058 +=== 3.3.6 Get Alarm settings === 999 999 1000 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1001 1001 1002 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1003 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1004 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1005 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1006 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1061 +Send a LoRaWAN downlink to ask device send Alarm settings. 1007 1007 1008 -(% style="color: blue" %)**DownlinkCommand: 0x08**1063 +* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 1009 1009 1010 - Format: Command Code (0x08) followed by 2 bytes or 4 bytes.1065 +**Example:** 1011 1011 1012 - UseAT+WEIGRE whenthe firstbyteis 1,only 1 byte. Whenit is,use AT+WEIGAP,thereare3bytes.1067 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 1013 1013 1014 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1015 1015 1016 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1017 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1018 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1070 +**Explain:** 1019 1019 1072 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 1020 1020 1074 +=== 3.3.7 Set Interrupt Mode === 1021 1021 1022 -=== 3.3.6 Set Digital pulse count value === 1023 1023 1077 +Feature, Set Interrupt mode for GPIO_EXIT. 1024 1024 1025 - Feature:Setthe pulseunt value.1079 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1026 1026 1027 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1028 - 1029 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1030 - 1031 1031 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1032 1032 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1033 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1034 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1035 - 1036 -(% style="color:blue" %)**Downlink Command: 0x09** 1037 - 1038 -Format: Command Code (0x09) followed by 5 bytes. 1039 - 1040 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1041 - 1042 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1043 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1044 - 1045 - 1046 - 1047 -=== 3.3.7 Set Workmode === 1048 - 1049 - 1050 -Feature: Switch working mode. 1051 - 1052 -(% style="color:blue" %)**AT Command: AT+MOD** 1053 - 1054 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1055 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1056 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1083 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1084 +0 1057 1057 OK 1086 +the mode is 0 =Disable Interrupt 1058 1058 ))) 1059 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1060 -OK 1061 -Attention:Take effect after ATZ 1062 -))) 1088 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1089 +Set Transmit Interval 1090 +0. (Disable Interrupt), 1091 +~1. (Trigger by rising and falling edge) 1092 +2. (Trigger by falling edge) 1093 +3. (Trigger by rising edge) 1094 +)))|(% style="width:157px" %)OK 1063 1063 1064 -(% style="color:blue" %)**Downlink Command: 0x0 A**1096 +(% style="color:blue" %)**Downlink Command: 0x06** 1065 1065 1066 -Format: Command Code (0x0 A) followed by1bytes.1098 +Format: Command Code (0x06) followed by 3 bytes. 1067 1067 1068 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1069 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1100 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1070 1070 1102 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1103 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1071 1071 1072 - 1073 1073 = 4. Battery & Power Consumption = 1074 1074 1075 1075 ... ... @@ -1082,31 +1082,24 @@ 1082 1082 1083 1083 1084 1084 (% class="wikigeneratedid" %) 1085 - **User can change firmware SN50v3-LB to:**1117 +User can change firmware SN50v3-LB to: 1086 1086 1087 1087 * Change Frequency band/ region. 1088 1088 * Update with new features. 1089 1089 * Fix bugs. 1090 1090 1091 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1123 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1092 1092 1093 -**Methods to Update Firmware:** 1094 1094 1126 +Methods to Update Firmware: 1127 + 1095 1095 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1096 1096 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1097 1097 1098 - 1099 - 1100 1100 = 6. FAQ = 1101 1101 1102 -== 6.1 Where can i find source code of SN50v3-LB? == 1103 1103 1104 1104 1105 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1106 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1107 - 1108 - 1109 - 1110 1110 = 7. Order Info = 1111 1111 1112 1112 ... ... @@ -1130,11 +1130,8 @@ 1130 1130 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1131 1131 * (% style="color:red" %)**NH**(%%): No Hole 1132 1132 1133 - 1134 - 1135 1135 = 8. Packing Info = 1136 1136 1137 - 1138 1138 (% style="color:#037691" %)**Package Includes**: 1139 1139 1140 1140 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1146,11 +1146,8 @@ 1146 1146 * Package Size / pcs : cm 1147 1147 * Weight / pcs : g 1148 1148 1149 - 1150 - 1151 1151 = 9. Support = 1152 1152 1153 1153 1154 1154 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1155 - 1156 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1175 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content