Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,7 +39,8 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 44 == 1.3 Specification == 45 45 ... ... @@ -46,7 +46,7 @@ 46 46 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 50 50 * Operating Temperature: -40 ~~ 85°C 51 51 52 52 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -89,11 +89,10 @@ 89 89 == 1.5 Button & LEDs == 90 90 91 91 92 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 93 93 94 - 95 95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 96 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 97 97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 98 98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 99 99 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -108,7 +108,7 @@ 108 108 == 1.6 BLE connection == 109 109 110 110 111 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 112 112 113 113 114 114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -123,35 +123,40 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230 513102034-2.png]]130 +[[image:image-20230610163213-1.png||height="404" width="699"]] 127 127 128 128 129 129 == 1.8 Mechanical == 130 130 135 +=== 1.8.1 for LB version === 131 131 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 133 133 134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 135 135 140 + 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 143 +=== 1.8.2 for LS version === 138 138 139 - == HoleOption ==145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 140 140 141 141 142 - SN50v3-LBhasdifferent holesize optionsfor different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:148 +== 1.9 Hole Option == 143 143 150 + 151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 + 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 145 145 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,9 +162,9 @@ 162 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 166 166 167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 168 168 169 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 ... ... @@ -193,10 +193,10 @@ 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 195 195 196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 197 197 198 198 199 -Press the button for 5 seconds to activate the SN50v3-LB. 208 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 200 200 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 ... ... @@ -208,52 +208,52 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 215 215 216 216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT228 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: 229 229 230 - *0x01: EU868239 +0x01: EU868 231 231 232 - *0x02: US915241 +0x02: US915 233 233 234 - *0x03: IN865243 +0x03: IN865 235 235 236 - *0x04: AU915245 +0x04: AU915 237 237 238 - *0x05: KZ865247 +0x05: KZ865 239 239 240 - *0x06: RU864249 +0x06: RU864 241 241 242 - *0x07: AS923251 +0x07: AS923 243 243 244 - *0x08: AS923-1253 +0x08: AS923-1 245 245 246 - *0x09: AS923-2255 +0x09: AS923-2 247 247 248 - *0x0a: AS923-3257 +0x0a: AS923-3 249 249 250 - *0x0b: CN470259 +0x0b: CN470 251 251 252 - *0x0c: EU433261 +0x0c: EU433 253 253 254 - *0x0d: KR920263 +0x0d: KR920 255 255 256 - *0x0e: MA869265 +0x0e: MA869 257 257 258 258 259 259 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -277,7 +277,7 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 281 281 282 282 For example: 283 283 ... ... @@ -286,7 +286,7 @@ 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 290 290 291 291 2. All modes share the same Payload Explanation from HERE. 292 292 ... ... @@ -298,9 +298,9 @@ 298 298 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)302 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**303 -| **Value**|Bat|(% style="width:191px" %)(((310 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 312 +|Value|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( 306 306 ADC(PA4) ... ... @@ -315,15 +315,14 @@ 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 316 316 317 317 318 - 319 319 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 320 320 321 321 322 322 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 323 323 324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)325 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**326 -| **Value**|BAT|(% style="width:196px" %)(((332 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:517px" %) 333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 334 +|Value|BAT|(% style="width:196px" %)((( 327 327 Temperature(DS18B20)(PC13) 328 328 )))|(% style="width:87px" %)((( 329 329 ADC(PA4) ... ... @@ -330,9 +330,8 @@ 330 330 )))|(% style="width:189px" %)((( 331 331 Digital in(PB15) & Digital Interrupt(PA8) 332 332 )))|(% style="width:208px" %)((( 333 -Distance measure by:1) LIDAR-Lite V3HP 334 -Or 335 -2) Ultrasonic Sensor 341 +Distance measure by: 1) LIDAR-Lite V3HP 342 +Or 2) Ultrasonic Sensor 336 336 )))|(% style="width:117px" %)Reserved 337 337 338 338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -353,8 +353,8 @@ 353 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 354 354 355 355 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 356 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**357 -| **Value**|BAT|(% style="width:183px" %)(((363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2** 364 +|Value|BAT|(% style="width:183px" %)((( 358 358 Temperature(DS18B20)(PC13) 359 359 )))|(% style="width:173px" %)((( 360 360 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -362,8 +362,7 @@ 362 362 ADC(PA4) 363 363 )))|(% style="width:323px" %)((( 364 364 Distance measure by:1)TF-Mini plus LiDAR 365 -Or 366 -2) TF-Luna LiDAR 372 +Or 2) TF-Luna LiDAR 367 367 )))|(% style="width:188px" %)Distance signal strength 368 368 369 369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -380,7 +380,7 @@ 380 380 381 381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 382 382 383 -[[image:image-20230 513105207-4.png||height="469" width="802"]]389 +[[image:image-20230610170047-1.png||height="452" width="799"]] 384 384 385 385 386 386 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -389,10 +389,10 @@ 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1395 -| **Value**|(% style="width:68px" %)(((400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 401 +|Value|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( 398 398 ADC2(PA5) ... ... @@ -415,8 +415,8 @@ 415 415 This mode has total 11 bytes. As shown below: 416 416 417 417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**419 -| **Value**|BAT|(% style="width:186px" %)(((424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2** 425 +|Value|BAT|(% style="width:186px" %)((( 420 420 Temperature1(DS18B20)(PC13) 421 421 )))|(% style="width:82px" %)((( 422 422 ADC(PA4) ... ... @@ -427,10 +427,10 @@ 427 427 428 428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 429 429 436 + 430 430 [[image:image-20230513134006-1.png||height="559" width="736"]] 431 431 432 432 433 - 434 434 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 435 435 436 436 ... ... @@ -456,10 +456,10 @@ 456 456 Check the response of this command and adjust the value to match the real value for thing. 457 457 458 458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 459 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 460 460 **Size(bytes)** 461 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**462 -| **Value**|BAT|(% style="width:193px" %)(((467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4** 468 +|Value|BAT|(% style="width:193px" %)((( 463 463 Temperature(DS18B20)(PC13) 464 464 )))|(% style="width:85px" %)((( 465 465 ADC(PA4) ... ... @@ -470,7 +470,6 @@ 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -484,8 +484,8 @@ 484 484 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 485 486 486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**488 -| **Value**|BAT|(% style="width:256px" %)(((492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4** 493 +|Value|BAT|(% style="width:256px" %)((( 489 489 Temperature(DS18B20)(PC13) 490 490 )))|(% style="width:108px" %)((( 491 491 ADC(PA4) ... ... @@ -498,15 +498,14 @@ 498 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 499 499 500 500 501 - 502 502 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 503 503 504 504 505 505 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 506 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 507 507 **Size(bytes)** 508 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2509 -| **Value**|BAT|(% style="width:188px" %)(((512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 513 +|Value|BAT|(% style="width:188px" %)((( 510 510 Temperature(DS18B20) 511 511 (PC13) 512 512 )))|(% style="width:83px" %)((( ... ... @@ -522,10 +522,10 @@ 522 522 523 523 524 524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 526 526 **Size(bytes)** 527 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2528 -| **Value**|BAT|(% style="width:207px" %)(((531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 532 +|Value|BAT|(% style="width:207px" %)((( 529 529 Temperature(DS18B20) 530 530 (PC13) 531 531 )))|(% style="width:94px" %)((( ... ... @@ -545,10 +545,10 @@ 545 545 546 546 547 547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 548 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 549 549 **Size(bytes)** 550 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4551 -| **Value**|BAT|(((554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 555 +|Value|BAT|((( 552 552 Temperature 553 553 (DS18B20)(PC13) 554 554 )))|((( ... ... @@ -584,6 +584,108 @@ 584 584 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 585 585 586 586 591 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 592 + 593 + 594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 595 + 596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 597 + 598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 599 + 600 + 601 +===== 2.3.2.10.a Uplink, PWM input capture ===== 602 + 603 + 604 +[[image:image-20230817172209-2.png||height="439" width="683"]] 605 + 606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 608 +|Value|Bat|(% style="width:191px" %)((( 609 +Temperature(DS18B20)(PC13) 610 +)))|(% style="width:78px" %)((( 611 +ADC(PA4) 612 +)))|(% style="width:135px" %)((( 613 +PWM_Setting 614 +&Digital Interrupt(PA8) 615 +)))|(% style="width:70px" %)((( 616 +Pulse period 617 +)))|(% style="width:89px" %)((( 618 +Duration of high level 619 +))) 620 + 621 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 622 + 623 + 624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 625 + 626 +**Frequency:** 627 + 628 +(% class="MsoNormal" %) 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 630 + 631 +(% class="MsoNormal" %) 632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 633 + 634 + 635 +(% class="MsoNormal" %) 636 +**Duty cycle:** 637 + 638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 639 + 640 +[[image:image-20230818092200-1.png||height="344" width="627"]] 641 + 642 + 643 +===== 2.3.2.10.b Uplink, PWM output ===== 644 + 645 + 646 +[[image:image-20230817172209-2.png||height="439" width="683"]] 647 + 648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 649 + 650 +a is the time delay of the output, the unit is ms. 651 + 652 +b is the output frequency, the unit is HZ. 653 + 654 +c is the duty cycle of the output, the unit is %. 655 + 656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 657 + 658 +aa is the time delay of the output, the unit is ms. 659 + 660 +bb is the output frequency, the unit is HZ. 661 + 662 +cc is the duty cycle of the output, the unit is %. 663 + 664 + 665 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 666 + 667 +The oscilloscope displays as follows: 668 + 669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 670 + 671 + 672 +===== 2.3.2.10.c Downlink, PWM output ===== 673 + 674 + 675 +[[image:image-20230817173800-3.png||height="412" width="685"]] 676 + 677 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 678 + 679 + xx xx xx is the output frequency, the unit is HZ. 680 + 681 + yy is the duty cycle of the output, the unit is %. 682 + 683 + zz zz is the time delay of the output, the unit is ms. 684 + 685 + 686 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 687 + 688 +The oscilloscope displays as follows: 689 + 690 +[[image:image-20230817173858-5.png||height="634" width="843"]] 691 + 692 + 587 587 === 2.3.3 Decode payload === 588 588 589 589 ... ... @@ -593,13 +593,13 @@ 593 593 594 594 The payload decoder function for TTN V3 are here: 595 595 596 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 702 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 597 598 598 599 599 ==== 2.3.3.1 Battery Info ==== 600 600 601 601 602 -Check the battery voltage for SN50v3-LB. 708 +Check the battery voltage for SN50v3-LB/LS. 603 603 604 604 Ex1: 0x0B45 = 2885mV 605 605 ... ... @@ -647,9 +647,9 @@ 647 647 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 648 648 649 649 650 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 756 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 651 651 652 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 758 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 653 653 654 654 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 655 655 ... ... @@ -657,10 +657,16 @@ 657 657 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 658 658 659 659 766 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 767 + 768 +[[image:image-20230811113449-1.png||height="370" width="608"]] 769 + 770 + 771 + 660 660 ==== 2.3.3.5 Digital Interrupt ==== 661 661 662 662 663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 664 664 665 665 (% style="color:blue" %)** Interrupt connection method:** 666 666 ... ... @@ -673,18 +673,18 @@ 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 675 675 676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 677 677 678 678 679 679 (% style="color:blue" %)**Below is the installation example:** 680 680 681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 682 682 683 683 * ((( 684 -One pin to SN50v3-LB's PA8 pin 796 +One pin to SN50v3-LB/LS's PA8 pin 685 685 ))) 686 686 * ((( 687 -The other pin to SN50v3-LB's VDD pin 799 +The other pin to SN50v3-LB/LS's VDD pin 688 688 ))) 689 689 690 690 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -708,7 +708,7 @@ 708 708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 709 709 710 710 711 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 823 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 712 712 713 713 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 714 714 ... ... @@ -720,13 +720,14 @@ 720 720 721 721 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 722 722 723 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 724 724 725 725 726 726 Below is the connection to SHT20/ SHT31. The connection is as below: 727 727 728 -[[image:image-20230 513103633-3.png||height="448" width="716"]]840 +[[image:image-20230610170152-2.png||height="501" width="846"]] 729 729 842 + 730 730 The device will be able to get the I2C sensor data now and upload to IoT Server. 731 731 732 732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -753,7 +753,7 @@ 753 753 754 754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 755 755 756 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 757 757 758 758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 759 759 ... ... @@ -762,7 +762,7 @@ 762 762 [[image:image-20230512173903-6.png||height="596" width="715"]] 763 763 764 764 765 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 766 767 767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 768 768 ... ... @@ -774,13 +774,13 @@ 774 774 ==== 2.3.3.9 Battery Output - BAT pin ==== 775 775 776 776 777 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 778 778 779 779 780 780 ==== 2.3.3.10 +5V Output ==== 781 781 782 782 783 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 784 784 785 785 The 5V output time can be controlled by AT Command. 786 786 ... ... @@ -788,7 +788,7 @@ 788 788 789 789 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 790 790 791 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 904 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 792 792 793 793 794 794 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -802,9 +802,37 @@ 802 802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 803 803 804 804 805 -==== 2.3.3.12 W orkingMOD ====918 +==== 2.3.3.12 PWM MOD ==== 806 806 807 807 921 +* ((( 922 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 923 +))) 924 +* ((( 925 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 926 +))) 927 + 928 + [[image:image-20230817183249-3.png||height="320" width="417"]] 929 + 930 +* ((( 931 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 932 +))) 933 +* ((( 934 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 935 +))) 936 +* ((( 937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 938 + 939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 940 + 941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 942 + 943 +b) If the output duration is more than 30 seconds, better to use external power source. 944 +))) 945 + 946 +==== 2.3.3.13 Working MOD ==== 947 + 948 + 808 808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 809 809 810 810 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -820,6 +820,7 @@ 820 820 * 6: MOD7 821 821 * 7: MOD8 822 822 * 8: MOD9 964 +* 9: MOD10 823 823 824 824 == 2.4 Payload Decoder file == 825 825 ... ... @@ -834,17 +834,17 @@ 834 834 == 2.5 Frequency Plans == 835 835 836 836 837 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 838 838 839 839 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 840 840 841 841 842 -= 3. Configure SN50v3-LB = 984 += 3. Configure SN50v3-LB/LS = 843 843 844 844 == 3.1 Configure Methods == 845 845 846 846 847 -SN50v3-LB supports below configure method: 989 +SN50v3-LB/LS supports below configure method: 848 848 849 849 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 850 850 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -863,10 +863,10 @@ 863 863 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 864 864 865 865 866 -== 3.3 Commands special design for SN50v3-LB == 1008 +== 3.3 Commands special design for SN50v3-LB/LS == 867 867 868 868 869 -These commands only valid for SN50v3-LB, as below: 1011 +These commands only valid for SN50v3-LB/LS, as below: 870 870 871 871 872 872 === 3.3.1 Set Transmit Interval Time === ... ... @@ -877,7 +877,7 @@ 877 877 (% style="color:blue" %)**AT Command: AT+TDC** 878 878 879 879 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 880 -|=(% style="width: 156px;background-color:# D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 881 881 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 882 882 30000 883 883 OK ... ... @@ -902,9 +902,9 @@ 902 902 903 903 Send a LoRaWAN downlink to ask the device to send its status. 904 904 905 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011047 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 906 906 907 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1049 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 908 908 909 909 910 910 === 3.3.3 Set Interrupt Mode === ... ... @@ -912,10 +912,10 @@ 912 912 913 913 Feature, Set Interrupt mode for GPIO_EXIT. 914 914 915 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 916 916 917 917 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 918 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 919 919 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 920 920 0 921 921 OK ... ... @@ -959,7 +959,7 @@ 959 959 (% style="color:blue" %)**AT Command: AT+5VT** 960 960 961 961 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 962 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 963 963 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 964 964 500(default) 965 965 OK ... ... @@ -985,9 +985,9 @@ 985 985 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 986 986 987 987 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 988 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 989 989 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 990 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 991 991 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 992 992 993 993 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1012,7 +1012,7 @@ 1012 1012 (% style="color:blue" %)**AT Command: AT+SETCNT** 1013 1013 1014 1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1015 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1016 1016 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1017 1017 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1018 1018 ... ... @@ -1033,7 +1033,7 @@ 1033 1033 (% style="color:blue" %)**AT Command: AT+MOD** 1034 1034 1035 1035 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1036 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1037 1037 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1038 1038 OK 1039 1039 ))) ... ... @@ -1049,11 +1049,97 @@ 1049 1049 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1050 1050 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1051 1051 1052 -= 4.Battery &PowerConsumption =1194 +=== 3.3.8 PWM setting === 1053 1053 1054 1054 1055 - SN50v3-LB useER26500 + SPC1520 batterypack.Seebelowlink for detailinformationaboutthe batteryinfoand howtoreplace.1197 +Feature: Set the time acquisition unit for PWM input capture. 1056 1056 1199 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1200 + 1201 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1204 +0(default) 1205 +OK 1206 +))) 1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 +OK 1209 + 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 + 1213 +(% style="color:blue" %)**Downlink Command: 0x0C** 1214 + 1215 +Format: Command Code (0x0C) followed by 1 bytes. 1216 + 1217 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 + 1220 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1221 + 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 + 1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1228 +OK 1229 +))) 1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1231 +OK 1232 + 1233 +))) 1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1236 + 1237 + 1238 +)))|(% style="width:137px" %)((( 1239 +OK 1240 +))) 1241 + 1242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1244 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1245 +AT+PWMOUT=a,b,c 1246 + 1247 + 1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1249 +Set PWM output time, output frequency and output duty cycle. 1250 + 1251 +((( 1252 + 1253 +))) 1254 + 1255 +((( 1256 + 1257 +))) 1258 +)))|(% style="width:242px" %)((( 1259 +a: Output time (unit: seconds) 1260 +The value ranges from 0 to 65535. 1261 +When a=65535, PWM will always output. 1262 +))) 1263 +|(% style="width:242px" %)((( 1264 +b: Output frequency (unit: HZ) 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +c: Output duty cycle (unit: %) 1268 +The value ranges from 0 to 100. 1269 +))) 1270 + 1271 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1272 + 1273 +Format: Command Code (0x0B01) followed by 6 bytes. 1274 + 1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1276 + 1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1279 + 1280 += 4. Battery & Power Cons = 1281 + 1282 + 1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1284 + 1057 1057 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1058 1058 1059 1059 ... ... @@ -1061,32 +1061,47 @@ 1061 1061 1062 1062 1063 1063 (% class="wikigeneratedid" %) 1064 -User can change firmware SN50v3-LB to: 1292 +**User can change firmware SN50v3-LB/LS to:** 1065 1065 1066 1066 * Change Frequency band/ region. 1067 1067 * Update with new features. 1068 1068 * Fix bugs. 1069 1069 1070 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1298 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1071 1071 1300 +**Methods to Update Firmware:** 1072 1072 1073 -Methods to Update Firmware: 1302 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1303 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1074 1074 1075 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1076 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1077 - 1078 1078 = 6. FAQ = 1079 1079 1080 -== 6.1 Where can i find source code of SN50v3-LB? == 1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1081 1081 1082 1082 1083 1083 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1084 1084 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1085 1085 1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1314 + 1315 + 1316 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1317 + 1318 + 1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1320 + 1321 + 1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1323 + 1324 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1325 + 1326 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1327 + 1328 + 1086 1086 = 7. Order Info = 1087 1087 1088 1088 1089 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1090 1090 1091 1091 (% style="color:red" %)**XX**(%%): The default frequency band 1092 1092 ... ... @@ -1111,7 +1111,7 @@ 1111 1111 1112 1112 (% style="color:#037691" %)**Package Includes**: 1113 1113 1114 -* SN50v3-LB LoRaWAN Generic Node 1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1115 1115 1116 1116 (% style="color:#037691" %)**Dimension and weight**: 1117 1117
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content