Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -41,6 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 + 45 + 44 44 == 1.3 Specification == 45 45 46 46 ... ... @@ -78,6 +78,8 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 83 + 84 + 81 81 == 1.4 Sleep mode and working mode == 82 82 83 83 ... ... @@ -105,6 +105,8 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 112 + 113 + 108 108 == 1.6 BLE connection == 109 109 110 110 ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,22 +277,21 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 292 293 -3. By default, the device will send an uplink message every 20 minutes. 294 294 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 298 ... ... @@ -345,7 +345,7 @@ 345 345 346 346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 347 347 348 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 349 349 350 350 [[image:image-20230512173903-6.png||height="596" width="715"]] 351 351 ... ... @@ -371,7 +371,7 @@ 371 371 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 375 375 376 376 [[image:image-20230512180609-7.png||height="555" width="802"]] 377 377 ... ... @@ -378,7 +378,7 @@ 378 378 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 382 382 383 383 [[image:image-20230513105207-4.png||height="469" width="802"]] 384 384 ... ... @@ -438,8 +438,8 @@ 438 438 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 443 1. ((( 444 444 Weight has 4 bytes, the unit is g. 445 445 ... ... @@ -449,7 +449,7 @@ 449 449 450 450 For example: 451 451 452 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**457 +**AT+GETSENSORVALUE =0** 453 453 454 454 Response: Weight is 401 g 455 455 ... ... @@ -593,13 +593,13 @@ 593 593 594 594 The payload decoder function for TTN V3 are here: 595 595 596 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]601 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 597 598 598 599 599 ==== 2.3.3.1 Battery Info ==== 600 600 601 601 602 -Check the battery voltage for SN50v3 -LB.607 +Check the battery voltage for SN50v3. 603 603 604 604 Ex1: 0x0B45 = 2885mV 605 605 ... ... @@ -653,7 +653,6 @@ 653 653 654 654 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 655 655 656 - 657 657 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 658 658 659 659 ... ... @@ -660,7 +660,7 @@ 660 660 ==== 2.3.3.5 Digital Interrupt ==== 661 661 662 662 663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 664 664 665 665 (% style="color:blue" %)** Interrupt connection method:** 666 666 ... ... @@ -673,18 +673,18 @@ 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 675 675 676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 677 677 678 678 679 679 (% style="color:blue" %)**Below is the installation example:** 680 680 681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 682 682 683 683 * ((( 684 -One pin to SN50v3 -LB's PA8 pin688 +One pin to SN50_v3's PA8 pin 685 685 ))) 686 686 * ((( 687 -The other pin to SN50v3 -LB's VDD pin691 +The other pin to SN50_v3's VDD pin 688 688 ))) 689 689 690 690 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -701,7 +701,7 @@ 701 701 702 702 The command is: 703 703 704 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 705 705 706 706 Below shows some screen captures in TTN V3: 707 707 ... ... @@ -720,11 +720,11 @@ 720 720 721 721 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 722 722 723 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 724 724 725 - 726 726 Below is the connection to SHT20/ SHT31. The connection is as below: 727 727 731 + 728 728 [[image:image-20230513103633-3.png||height="448" width="716"]] 729 729 730 730 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -753,7 +753,7 @@ 753 753 754 754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 755 755 756 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 757 757 758 758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 759 759 ... ... @@ -762,7 +762,7 @@ 762 762 [[image:image-20230512173903-6.png||height="596" width="715"]] 763 763 764 764 765 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 766 767 767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 768 768 ... ... @@ -780,7 +780,7 @@ 780 780 ==== 2.3.3.10 +5V Output ==== 781 781 782 782 783 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 784 784 785 785 The 5V output time can be controlled by AT Command. 786 786 ... ... @@ -821,6 +821,8 @@ 821 821 * 7: MOD8 822 822 * 8: MOD9 823 823 828 + 829 + 824 824 == 2.4 Payload Decoder file == 825 825 826 826 ... ... @@ -850,6 +850,8 @@ 850 850 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 851 851 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 852 852 859 + 860 + 853 853 == 3.2 General Commands == 854 854 855 855 ... ... @@ -866,7 +866,7 @@ 866 866 == 3.3 Commands special design for SN50v3-LB == 867 867 868 868 869 -These commands only valid for S N50v3-LB, as below:877 +These commands only valid for S31x-LB, as below: 870 870 871 871 872 872 === 3.3.1 Set Transmit Interval Time === ... ... @@ -897,6 +897,8 @@ 897 897 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 898 898 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 899 899 908 + 909 + 900 900 === 3.3.2 Get Device Status === 901 901 902 902 ... ... @@ -945,6 +945,8 @@ 945 945 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 946 946 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 947 947 958 + 959 + 948 948 === 3.3.4 Set Power Output Duration === 949 949 950 950 ... ... @@ -977,6 +977,8 @@ 977 977 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 978 978 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 979 979 992 + 993 + 980 980 === 3.3.5 Set Weighing parameters === 981 981 982 982 ... ... @@ -1002,6 +1002,8 @@ 1002 1002 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1003 1003 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1004 1004 1019 + 1020 + 1005 1005 === 3.3.6 Set Digital pulse count value === 1006 1006 1007 1007 ... ... @@ -1025,6 +1025,8 @@ 1025 1025 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1026 1026 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1027 1027 1044 + 1045 + 1028 1028 === 3.3.7 Set Workmode === 1029 1029 1030 1030 ... ... @@ -1049,6 +1049,8 @@ 1049 1049 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1050 1050 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1051 1051 1070 + 1071 + 1052 1052 = 4. Battery & Power Consumption = 1053 1053 1054 1054 ... ... @@ -1075,6 +1075,8 @@ 1075 1075 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1076 1076 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1077 1077 1098 + 1099 + 1078 1078 = 6. FAQ = 1079 1079 1080 1080 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1083,6 +1083,8 @@ 1083 1083 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1084 1084 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1085 1085 1108 + 1109 + 1086 1086 = 7. Order Info = 1087 1087 1088 1088 ... ... @@ -1106,6 +1106,8 @@ 1106 1106 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1107 1107 * (% style="color:red" %)**NH**(%%): No Hole 1108 1108 1133 + 1134 + 1109 1109 = 8. Packing Info = 1110 1110 1111 1111 ... ... @@ -1120,6 +1120,8 @@ 1120 1120 * Package Size / pcs : cm 1121 1121 * Weight / pcs : g 1122 1122 1149 + 1150 + 1123 1123 = 9. Support = 1124 1124 1125 1125