<
From version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
To version < 9.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -43,7 +43,6 @@
43 43  
44 44  == 1.3 Specification ==
45 45  
46 -
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,7 +80,6 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 -
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -123,7 +123,7 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -138,7 +138,6 @@
138 138  
139 139  == Hole Option ==
140 140  
141 -
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -146,12 +146,12 @@
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
147 += 2. Configure S31x-LB to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,11 +162,11 @@
162 162  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
168 168  
169 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
171 171  
172 172  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -193,10 +193,10 @@
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
197 197  
198 198  
199 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
200 200  
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -220,9 +220,11 @@
220 220  
221 221  Example parse in TTNv3
222 222  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -274,352 +274,41 @@
274 274  Ex2: 0x0B49 = 2889mV
275 275  
276 276  
277 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 +Sensor Data is uplink via FPORT=2
281 281  
282 -For example:
283 -
284 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 -
286 -
287 -(% style="color:red" %) **Important Notice:**
288 -
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 -
291 -2. All modes share the same Payload Explanation from HERE.
292 -
293 -3. By default, the device will send an uplink message every 20 minutes.
294 -
295 -
296 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
297 -
298 -
299 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 -
301 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 -|**Value**|Bat|(% style="width:191px" %)(((
304 -Temperature(DS18B20)(PC13)
305 -)))|(% style="width:78px" %)(((
306 -ADC(PA4)
307 -)))|(% style="width:216px" %)(((
308 -Digital in(PB15)&Digital Interrupt(PA8)
309 -)))|(% style="width:308px" %)(((
310 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 -)))|(% style="width:154px" %)(((
312 -Humidity(SHT20 or SHT31)
313 -)))
314 -
315 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316 -
317 -
318 -
319 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320 -
321 -
322 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
323 -
324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
325 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
326 -|**Value**|BAT|(% style="width:196px" %)(((
327 -Temperature(DS18B20)(PC13)
328 -)))|(% style="width:87px" %)(((
329 -ADC(PA4)
330 -)))|(% style="width:189px" %)(((
331 -Digital in(PB15) & Digital Interrupt(PA8)
332 -)))|(% style="width:208px" %)(((
333 -Distance measure by:1) LIDAR-Lite V3HP
334 -Or
335 -2) Ultrasonic Sensor
336 -)))|(% style="width:117px" %)Reserved
337 -
338 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
339 -
340 -
341 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
342 -
343 -[[image:image-20230512173758-5.png||height="563" width="712"]]
344 -
345 -
346 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347 -
348 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
349 -
350 -[[image:image-20230512173903-6.png||height="596" width="715"]]
351 -
352 -
353 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354 -
355 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 -|**Value**|BAT|(% style="width:183px" %)(((
358 -Temperature(DS18B20)(PC13)
359 -)))|(% style="width:173px" %)(((
360 -Digital in(PB15) & Digital Interrupt(PA8)
361 -)))|(% style="width:84px" %)(((
362 -ADC(PA4)
363 -)))|(% style="width:323px" %)(((
364 -Distance measure by:1)TF-Mini plus LiDAR
365 -Or 
366 -2) TF-Luna LiDAR
367 -)))|(% style="width:188px" %)Distance signal  strength
368 -
369 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370 -
371 -
372 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 -
374 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
375 -
376 -[[image:image-20230512180609-7.png||height="555" width="802"]]
377 -
378 -
379 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 -
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382 -
383 -[[image:image-20230513105207-4.png||height="469" width="802"]]
384 -
385 -
386 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387 -
388 -
389 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390 -
391 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 -|**Value**|(% style="width:68px" %)(((
396 -ADC1(PA4)
397 -)))|(% style="width:75px" %)(((
398 -ADC2(PA5)
399 -)))|(((
400 -ADC3(PA8)
401 -)))|(((
402 -Digital Interrupt(PB15)
403 -)))|(% style="width:304px" %)(((
404 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 -)))|(% style="width:163px" %)(((
406 -Humidity(SHT20 or SHT31)
407 -)))|(% style="width:53px" %)Bat
408 -
409 -[[image:image-20230513110214-6.png]]
410 -
411 -
412 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413 -
414 -
415 -This mode has total 11 bytes. As shown below:
416 -
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 -|**Value**|BAT|(% style="width:186px" %)(((
420 -Temperature1(DS18B20)(PC13)
421 -)))|(% style="width:82px" %)(((
422 -ADC(PA4)
423 -)))|(% style="width:210px" %)(((
424 -Digital in(PB15) & Digital Interrupt(PA8) 
425 -)))|(% style="width:191px" %)Temperature2(DS18B20)
426 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
427 -
428 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429 -
430 -[[image:image-20230513134006-1.png||height="559" width="736"]]
431 -
432 -
433 -
434 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435 -
436 -
437 -[[image:image-20230512164658-2.png||height="532" width="729"]]
438 -
439 -Each HX711 need to be calibrated before used. User need to do below two steps:
440 -
441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
443 -1. (((
444 -Weight has 4 bytes, the unit is g.
445 -
446 -
447 -
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
448 448  )))
449 449  
450 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
451 451  
452 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
453 453  
454 -Response:  Weight is 401 g
455 -
456 -Check the response of this command and adjust the value to match the real value for thing.
457 -
458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 -**Size(bytes)**
461 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 -|**Value**|BAT|(% style="width:193px" %)(((
463 -Temperature(DS18B20)(PC13)
464 -)))|(% style="width:85px" %)(((
465 -ADC(PA4)
466 -)))|(% style="width:186px" %)(((
467 -Digital in(PB15) & Digital Interrupt(PA8)
468 -)))|(% style="width:100px" %)Weight
469 -
470 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471 -
472 -
473 -
474 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475 -
476 -
477 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478 -
479 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
480 -
481 -[[image:image-20230512181814-9.png||height="543" width="697"]]
482 -
483 -
484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485 -
486 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 -|**Value**|BAT|(% style="width:256px" %)(((
489 -Temperature(DS18B20)(PC13)
490 -)))|(% style="width:108px" %)(((
491 -ADC(PA4)
492 -)))|(% style="width:126px" %)(((
493 -Digital in(PB15)
494 -)))|(% style="width:145px" %)(((
495 -Count(PA8)
496 -)))
497 -
498 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499 -
500 -
501 -
502 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
503 -
504 -
505 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
506 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
507 -**Size(bytes)**
508 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
509 -|**Value**|BAT|(% style="width:188px" %)(((
510 -Temperature(DS18B20)
511 -(PC13)
512 -)))|(% style="width:83px" %)(((
513 -ADC(PA5)
514 -)))|(% style="width:184px" %)(((
515 -Digital Interrupt1(PA8)
516 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
517 -
518 -[[image:image-20230513111203-7.png||height="324" width="975"]]
519 -
520 -
521 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
522 -
523 -
524 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 -**Size(bytes)**
527 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
528 -|**Value**|BAT|(% style="width:207px" %)(((
529 -Temperature(DS18B20)
530 -(PC13)
531 -)))|(% style="width:94px" %)(((
532 -ADC1(PA4)
533 -)))|(% style="width:198px" %)(((
534 -Digital Interrupt(PB15)
535 -)))|(% style="width:84px" %)(((
536 -ADC2(PA5)
537 -)))|(% style="width:82px" %)(((
538 -ADC3(PA8)
539 -)))
540 -
541 -[[image:image-20230513111231-8.png||height="335" width="900"]]
542 -
543 -
544 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
545 -
546 -
547 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
549 -**Size(bytes)**
550 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
551 -|**Value**|BAT|(((
552 -Temperature
553 -(DS18B20)(PC13)
554 -)))|(((
555 -Temperature2
556 -(DS18B20)(PB9)
557 -)))|(((
558 -Digital Interrupt
559 -(PB15)
560 -)))|(% style="width:193px" %)(((
561 -Temperature3
562 -(DS18B20)(PB8)
563 -)))|(% style="width:78px" %)(((
564 -Count1(PA8)
565 -)))|(% style="width:78px" %)(((
566 -Count2(PA4)
567 -)))
568 -
569 -[[image:image-20230513111255-9.png||height="341" width="899"]]
570 -
571 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
572 -
573 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
574 -
575 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
576 -
577 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
578 -
579 -
580 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
581 -
582 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
583 -
584 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
585 -
586 -
587 -=== 2.3.3  ​Decode payload ===
588 -
589 -
590 -While using TTN V3 network, you can add the payload format to decode the payload.
591 -
592 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
593 -
594 -The payload decoder function for TTN V3 are here:
595 -
596 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597 -
598 -
599 -==== 2.3.3.1 Battery Info ====
600 -
601 -
602 -Check the battery voltage for SN50v3-LB.
603 -
604 604  Ex1: 0x0B45 = 2885mV
605 605  
606 606  Ex2: 0x0B49 = 2889mV
607 607  
608 608  
609 -==== 2.3.3.2  Temperature (DS18B20) ====
610 610  
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
611 611  
612 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 +**Example**:
613 613  
614 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
615 -
616 -(% style="color:blue" %)**Connection:**
617 -
618 -[[image:image-20230512180718-8.png||height="538" width="647"]]
619 -
620 -
621 -(% style="color:blue" %)**Example**:
622 -
623 623  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
624 624  
625 625  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -627,224 +627,195 @@
627 627  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
628 628  
629 629  
630 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
631 631  
632 632  
633 -The digital input for pin PB15,
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
634 634  
635 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
636 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
637 637  
638 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
639 -(((
640 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
641 641  
642 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 643  
644 -
645 -)))
328 +**Example:**
646 646  
647 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
648 648  
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
649 649  
650 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
651 651  
652 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
653 653  
654 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
655 655  
339 +== 2.4 Payload Decoder file ==
656 656  
657 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
658 658  
342 +In TTN, use can add a custom payload so it shows friendly reading
659 659  
660 -==== 2.3.3.5 Digital Interrupt ====
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
661 661  
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
662 662  
663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
664 664  
665 -(% style="color:blue" %)** Interrupt connection method:**
349 +== 2.5 Datalog Feature ==
666 666  
667 -[[image:image-20230513105351-5.png||height="147" width="485"]]
668 668  
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
669 669  
670 -(% style="color:blue" %)**Example to use with door sensor :**
671 671  
672 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
673 673  
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
675 675  
676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
677 677  
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
678 678  
679 -(% style="color:blue" %)**Below is the installation example:**
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
680 680  
681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
682 682  
683 -* (((
684 -One pin to SN50v3-LB's PA8 pin
685 -)))
686 -* (((
687 -The other pin to SN50v3-LB's VDD pin
688 -)))
367 +=== 2.5.2 Unix TimeStamp ===
689 689  
690 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
691 691  
692 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
370 +S31x-LB uses Unix TimeStamp format based on
693 693  
694 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
695 695  
696 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
697 697  
698 -The above photos shows the two parts of the magnetic switch fitted to a door.
376 +Below is the converter example
699 699  
700 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
701 701  
702 -The command is:
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
703 703  
704 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
705 705  
706 -Below shows some screen captures in TTN V3:
383 +=== 2.5.3 Set Device Time ===
707 707  
708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
709 709  
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
710 710  
711 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
712 712  
713 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
714 714  
715 715  
716 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
717 717  
718 718  
719 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
396 +The Datalog uplinks will use below payload format.
720 720  
721 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
398 +**Retrieval data payload:**
722 722  
723 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
724 724  
408 +**Poll message flag & Ext:**
725 725  
726 -Below is the connection to SHT20/ SHT31. The connection is as below:
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
727 727  
728 -[[image:image-20230513103633-3.png||height="448" width="716"]]
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
729 729  
730 -The device will be able to get the I2C sensor data now and upload to IoT Server.
414 +**Poll Message Flag**: 1: This message is a poll message reply.
731 731  
732 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
416 +* Poll Message Flag is set to 1.
733 733  
734 -Convert the read byte to decimal and divide it by ten.
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
735 735  
736 -**Example:**
420 +For example, in US915 band, the max payload for different DR is:
737 737  
738 -Temperature:  Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
422 +**a) DR0:** max is 11 bytes so one entry of data
739 739  
740 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
741 741  
742 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
426 +**c) DR2:** total payload includes 11 entries of data
743 743  
428 +**d) DR3: **total payload includes 22 entries of data.
744 744  
745 -==== 2.3.3.7  ​Distance Reading ====
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
746 746  
747 747  
748 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
749 -
750 -
751 -==== 2.3.3.8 Ultrasonic Sensor ====
752 -
753 -
754 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755 -
756 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
757 -
758 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
759 -
760 -The picture below shows the connection:
761 -
762 -[[image:image-20230512173903-6.png||height="596" width="715"]]
763 -
764 -
765 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 -
767 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
768 -
769 769  **Example:**
770 770  
771 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
772 772  
437 +[[image:1682646494051-944.png]]
773 773  
774 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +If user sends below downlink command: 3160065F9760066DA705
775 775  
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
776 776  
777 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
778 778  
779 779  
780 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
781 781  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
782 782  
783 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
784 784  
785 -The 5V output time can be controlled by AT Command.
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
786 786  
787 -(% style="color:blue" %)**AT+5VT=1000**
458 +(((
459 +7FFF089801464160065F97
460 +)))
788 788  
789 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
790 790  
791 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
792 792  
470 +(((
471 +**Hum**=0x014B/10=32.6
472 +)))
793 793  
794 -==== 2.3.3.11  BH1750 Illumination Sensor ====
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
476 +)))
795 795  
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
480 +)))
796 796  
797 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
798 798  
799 -[[image:image-20230512172447-4.png||height="416" width="712"]]
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
800 800  
485 +== 2.6 Temperature Alarm Feature ==
801 801  
802 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803 803  
488 +S31x-LB work flow with Alarm feature.
804 804  
805 -==== 2.3.3.12  Working MOD ====
806 806  
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
807 807  
808 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809 809  
810 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
494 +== 2.7 Frequency Plans ==
811 811  
812 -Case 7^^th^^ Byte >> 2 & 0x1f:
813 813  
814 -* 0: MOD1
815 -* 1: MOD2
816 -* 2: MOD3
817 -* 3: MOD4
818 -* 4: MOD5
819 -* 5: MOD6
820 -* 6: MOD7
821 -* 7: MOD8
822 -* 8: MOD9
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
823 823  
824 -== 2.4 Payload Decoder file ==
825 -
826 -
827 -In TTN, use can add a custom payload so it shows friendly reading
828 -
829 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
830 -
831 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
832 -
833 -
834 -== 2.5 Frequency Plans ==
835 -
836 -
837 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
838 -
839 839  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
840 840  
841 841  
842 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
843 843  
844 844  == 3.1 Configure Methods ==
845 845  
846 846  
847 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
848 848  
849 849  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
850 850  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -863,10 +863,10 @@
863 863  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
864 864  
865 865  
866 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
867 867  
868 868  
869 -These commands only valid for SN50v3-LB, as below:
529 +These commands only valid for S31x-LB, as below:
870 870  
871 871  
872 872  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -900,7 +900,7 @@
900 900  === 3.3.2 Get Device Status ===
901 901  
902 902  
903 -Send a LoRaWAN downlink to ask the device to send its status.
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
904 904  
905 905  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
906 906  
... ... @@ -907,152 +907,112 @@
907 907  Sensor will upload Device Status via FPORT=5. See payload section for detail.
908 908  
909 909  
910 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
911 911  
572 +* (% style="color:blue" %)**AT Command:**
912 912  
913 -Feature, Set Interrupt mode for GPIO_EXIT.
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
914 914  
915 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
916 916  
917 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
918 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
919 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
920 -0
921 -OK
922 -the mode is 0 =Disable Interrupt
923 -)))
924 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
925 -Set Transmit Interval
926 -0. (Disable Interrupt),
927 -~1. (Trigger by rising and falling edge)
928 -2. (Trigger by falling edge)
929 -3. (Trigger by rising edge)
930 -)))|(% style="width:157px" %)OK
931 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
932 -Set Transmit Interval
933 -trigger by rising edge.
934 -)))|(% style="width:157px" %)OK
935 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
580 +Example:
936 936  
937 -(% style="color:blue" %)**Downlink Command: 0x06**
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
938 938  
939 -Format: Command Code (0x06) followed by 3 bytes.
584 +* (% style="color:blue" %)**Downlink Payload:**
940 940  
941 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
942 942  
943 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
944 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
945 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
946 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
947 947  
948 -=== 3.3.4 Set Power Output Duration ===
949 949  
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
950 950  
951 -Control the output duration 5V . Before each sampling, device will
593 +* (% style="color:blue" %)**AT Command:**
952 952  
953 -~1. first enable the power output to external sensor,
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
954 954  
955 -2. keep it on as per duration, read sensor value and construct uplink payload
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
956 956  
957 -3. final, close the power output.
601 +Example:
958 958  
959 -(% style="color:blue" %)**AT Command: AT+5VT**
603 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
960 960  
961 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
962 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
963 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
964 -500(default)
965 -OK
966 -)))
967 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
968 -Close after a delay of 1000 milliseconds.
969 -)))|(% style="width:157px" %)OK
605 +* (% style="color:blue" %)**Downlink Payload:**
970 970  
971 -(% style="color:blue" %)**Downlink Command: 0x07**
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
972 972  
973 -Format: Command Code (0x07) followed by 2 bytes.
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
974 974  
975 -The first and second bytes are the time to turn on.
976 976  
977 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
978 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
612 +=== 3.3.5 Set Alarm Interval ===
979 979  
980 -=== 3.3.5 Set Weighing parameters ===
614 +The shortest time of two Alarm packet. (unit: min)
981 981  
616 +* (% style="color:blue" %)**AT Command:**
982 982  
983 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
984 984  
985 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
620 +* (% style="color:blue" %)**Downlink Payload:**
986 986  
987 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
988 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
989 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
990 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
991 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
992 992  
993 -(% style="color:blue" %)**Downlink Command: 0x08**
994 994  
995 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
625 +=== 3.3.6 Get Alarm settings ===
996 996  
997 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
998 998  
999 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
1000 1000  
1001 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1002 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1003 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1004 1004  
1005 -=== 3.3.6 Set Digital pulse count value ===
632 +**Example:**
1006 1006  
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1007 1007  
1008 -Feature: Set the pulse count value.
1009 1009  
1010 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
637 +**Explain:**
1011 1011  
1012 -(% style="color:blue" %)**AT Command: AT+SETCNT**
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1013 1013  
1014 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1016 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1017 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
641 +=== 3.3.7 Set Interrupt Mode ===
1018 1018  
1019 -(% style="color:blue" %)**Downlink Command: 0x09**
1020 1020  
1021 -Format: Command Code (0x09) followed by 5 bytes.
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1022 1022  
1023 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1024 1024  
1025 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1026 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1027 -
1028 -=== 3.3.7 Set Workmode ===
1029 -
1030 -
1031 -Feature: Switch working mode.
1032 -
1033 -(% style="color:blue" %)**AT Command: AT+MOD**
1034 -
1035 1035  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1036 1036  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1037 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1038 1038  OK
653 +the mode is 0 =Disable Interrupt
1039 1039  )))
1040 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1041 -OK
1042 -Attention:Take effect after ATZ
1043 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1044 1044  
1045 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1046 1046  
1047 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1048 1048  
1049 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1050 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1051 1051  
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
671 +
1052 1052  = 4. Battery & Power Consumption =
1053 1053  
1054 1054  
1055 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
675 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1056 1056  
1057 1057  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1058 1058  
... ... @@ -1061,7 +1061,7 @@
1061 1061  
1062 1062  
1063 1063  (% class="wikigeneratedid" %)
1064 -User can change firmware SN50v3-LB to:
684 +User can change firmware S31x-LB to:
1065 1065  
1066 1066  * Change Frequency band/ region.
1067 1067  * Update with new features.
... ... @@ -1077,47 +1077,47 @@
1077 1077  
1078 1078  = 6. FAQ =
1079 1079  
1080 -== 6.1 Where can i find source code of SN50v3-LB? ==
1081 1081  
1082 1082  
1083 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1084 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1085 -
1086 1086  = 7. Order Info =
1087 1087  
1088 1088  
1089 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
705 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1090 1090  
1091 1091  (% style="color:red" %)**XX**(%%): The default frequency band
1092 1092  
1093 1093  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
710 +
1094 1094  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
712 +
1095 1095  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
714 +
1096 1096  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
716 +
1097 1097  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
718 +
1098 1098  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
720 +
1099 1099  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
722 +
1100 1100  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1101 1101  
1102 -(% style="color:red" %)**YY: ** (%%)Hole Option
725 += =
1103 1103  
1104 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1105 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1106 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1107 -* (% style="color:red" %)**NH**(%%): No Hole
1108 -
1109 1109  = 8. ​Packing Info =
1110 1110  
1111 -
1112 1112  (% style="color:#037691" %)**Package Includes**:
1113 1113  
1114 -* SN50v3-LB LoRaWAN Generic Node
731 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1115 1115  
1116 1116  (% style="color:#037691" %)**Dimension and weight**:
1117 1117  
1118 1118  * Device Size: cm
736 +
1119 1119  * Device Weight: g
738 +
1120 1120  * Package Size / pcs : cm
740 +
1121 1121  * Weight / pcs : g
1122 1122  
1123 1123  = 9. Support =
... ... @@ -1124,5 +1124,4 @@
1124 1124  
1125 1125  
1126 1126  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1127 -
1128 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
747 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0