Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -41,6 +41,7 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 + 44 44 == 1.3 Specification == 45 45 46 46 ... ... @@ -78,6 +78,7 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 82 + 81 81 == 1.4 Sleep mode and working mode == 82 82 83 83 ... ... @@ -105,6 +105,7 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 110 + 108 108 == 1.6 BLE connection == 109 109 110 110 ... ... @@ -277,22 +277,20 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.283 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)287 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 292 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 293 +1. All modes share the same Payload Explanation from HERE. 294 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 292 293 -3. By default, the device will send an uplink message every 20 minutes. 294 - 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 298 ... ... @@ -299,7 +299,7 @@ 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**303 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 303 303 |**Value**|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( ... ... @@ -322,7 +322,7 @@ 322 322 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 323 323 324 324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 325 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**326 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 326 326 |**Value**|BAT|(% style="width:196px" %)((( 327 327 Temperature(DS18B20)(PC13) 328 328 )))|(% style="width:87px" %)((( ... ... @@ -331,8 +331,7 @@ 331 331 Digital in(PB15) & Digital Interrupt(PA8) 332 332 )))|(% style="width:208px" %)((( 333 333 Distance measure by:1) LIDAR-Lite V3HP 334 -Or 335 -2) Ultrasonic Sensor 335 +Or 2) Ultrasonic Sensor 336 336 )))|(% style="width:117px" %)Reserved 337 337 338 338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -345,7 +345,7 @@ 345 345 346 346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 347 347 348 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**348 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 349 349 350 350 [[image:image-20230512173903-6.png||height="596" width="715"]] 351 351 ... ... @@ -371,7 +371,7 @@ 371 371 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**374 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 375 375 376 376 [[image:image-20230512180609-7.png||height="555" width="802"]] 377 377 ... ... @@ -378,7 +378,7 @@ 378 378 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**381 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 382 382 383 383 [[image:image-20230513105207-4.png||height="469" width="802"]] 384 384 ... ... @@ -391,7 +391,7 @@ 391 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 395 395 |**Value**|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( ... ... @@ -438,18 +438,15 @@ 438 438 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.441 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 443 1. ((( 444 444 Weight has 4 bytes, the unit is g. 445 - 446 - 447 - 448 448 ))) 449 449 450 450 For example: 451 451 452 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**449 +**AT+GETSENSORVALUE =0** 453 453 454 454 Response: Weight is 401 g 455 455 ... ... @@ -460,11 +460,13 @@ 460 460 **Size(bytes)** 461 461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 462 462 |**Value**|BAT|(% style="width:193px" %)((( 463 -Temperature(DS18B20)(PC13) 460 +Temperature(DS18B20) 461 +(PC13) 464 464 )))|(% style="width:85px" %)((( 465 465 ADC(PA4) 466 466 )))|(% style="width:186px" %)((( 467 -Digital in(PB15) & Digital Interrupt(PA8) 465 +Digital in(PB15) & 466 +Digital Interrupt(PA8) 468 468 )))|(% style="width:100px" %)Weight 469 469 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -480,11 +480,10 @@ 480 480 481 481 [[image:image-20230512181814-9.png||height="543" width="697"]] 482 482 483 - 484 484 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 485 486 486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**485 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 488 |**Value**|BAT|(% style="width:256px" %)((( 489 489 Temperature(DS18B20)(PC13) 490 490 )))|(% style="width:108px" %)((( ... ... @@ -524,7 +524,7 @@ 524 524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 525 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 526 526 **Size(bytes)** 527 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2525 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 528 528 |**Value**|BAT|(% style="width:207px" %)((( 529 529 Temperature(DS18B20) 530 530 (PC13) ... ... @@ -547,19 +547,19 @@ 547 547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 548 548 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 549 549 **Size(bytes)** 550 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4548 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 551 551 |**Value**|BAT|((( 552 -Temperature 553 -( DS18B20)(PC13)550 +Temperature1(DS18B20) 551 +(PC13) 554 554 )))|((( 555 -Temperature2 556 -( DS18B20)(PB9)553 +Temperature2(DS18B20) 554 +(PB9) 557 557 )))|((( 558 558 Digital Interrupt 559 559 (PB15) 560 560 )))|(% style="width:193px" %)((( 561 -Temperature3 562 -( DS18B20)(PB8)559 +Temperature3(DS18B20) 560 +(PB8) 563 563 )))|(% style="width:78px" %)((( 564 564 Count1(PA8) 565 565 )))|(% style="width:78px" %)((( ... ... @@ -593,13 +593,13 @@ 593 593 594 594 The payload decoder function for TTN V3 are here: 595 595 596 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]594 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 597 598 598 599 599 ==== 2.3.3.1 Battery Info ==== 600 600 601 601 602 -Check the battery voltage for SN50v3 -LB.600 +Check the battery voltage for SN50v3. 603 603 604 604 Ex1: 0x0B45 = 2885mV 605 605 ... ... @@ -653,7 +653,6 @@ 653 653 654 654 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 655 655 656 - 657 657 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 658 658 659 659 ... ... @@ -660,7 +660,7 @@ 660 660 ==== 2.3.3.5 Digital Interrupt ==== 661 661 662 662 663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.660 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 664 664 665 665 (% style="color:blue" %)** Interrupt connection method:** 666 666 ... ... @@ -673,18 +673,18 @@ 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 675 675 676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.673 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 677 677 678 678 679 679 (% style="color:blue" %)**Below is the installation example:** 680 680 681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:678 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 682 682 683 683 * ((( 684 -One pin to SN50v3 -LB's PA8 pin681 +One pin to SN50_v3's PA8 pin 685 685 ))) 686 686 * ((( 687 -The other pin to SN50v3 -LB's VDD pin684 +The other pin to SN50_v3's VDD pin 688 688 ))) 689 689 690 690 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -701,13 +701,12 @@ 701 701 702 702 The command is: 703 703 704 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 701 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 705 705 706 706 Below shows some screen captures in TTN V3: 707 707 708 708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 709 709 710 - 711 711 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 712 712 713 713 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -715,16 +715,15 @@ 715 715 716 716 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 717 717 718 - 719 719 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 720 720 721 721 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 722 722 723 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**718 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 724 724 725 - 726 726 Below is the connection to SHT20/ SHT31. The connection is as below: 727 727 722 + 728 728 [[image:image-20230513103633-3.png||height="448" width="716"]] 729 729 730 730 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -744,16 +744,14 @@ 744 744 745 745 ==== 2.3.3.7 Distance Reading ==== 746 746 747 - 748 748 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 749 749 750 750 751 751 ==== 2.3.3.8 Ultrasonic Sensor ==== 752 752 753 - 754 754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 755 755 756 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.749 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 757 757 758 758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 759 759 ... ... @@ -761,9 +761,8 @@ 761 761 762 762 [[image:image-20230512173903-6.png||height="596" width="715"]] 763 763 757 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 764 764 765 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 - 767 767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 768 768 769 769 **Example:** ... ... @@ -771,17 +771,16 @@ 771 771 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 772 772 773 773 766 + 774 774 ==== 2.3.3.9 Battery Output - BAT pin ==== 775 775 776 - 777 777 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 778 778 779 779 780 780 ==== 2.3.3.10 +5V Output ==== 781 781 774 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 782 782 783 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 - 785 785 The 5V output time can be controlled by AT Command. 786 786 787 787 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -791,20 +791,18 @@ 791 791 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 792 792 793 793 785 + 794 794 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 795 795 796 - 797 797 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 798 798 799 799 [[image:image-20230512172447-4.png||height="416" width="712"]] 800 800 801 - 802 802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 803 803 804 804 805 805 ==== 2.3.3.12 Working MOD ==== 806 806 807 - 808 808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 809 809 810 810 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -831,6 +831,7 @@ 831 831 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 832 832 833 833 823 + 834 834 == 2.5 Frequency Plans == 835 835 836 836 ... ... @@ -866,12 +866,11 @@ 866 866 == 3.3 Commands special design for SN50v3-LB == 867 867 868 868 869 -These commands only valid for S N50v3-LB, as below:859 +These commands only valid for S31x-LB, as below: 870 870 871 871 872 872 === 3.3.1 Set Transmit Interval Time === 873 873 874 - 875 875 Feature: Change LoRaWAN End Node Transmit Interval. 876 876 877 877 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -899,7 +899,6 @@ 899 899 900 900 === 3.3.2 Get Device Status === 901 901 902 - 903 903 Send a LoRaWAN downlink to ask the device to send its status. 904 904 905 905 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -909,7 +909,6 @@ 909 909 910 910 === 3.3.3 Set Interrupt Mode === 911 911 912 - 913 913 Feature, Set Interrupt mode for GPIO_EXIT. 914 914 915 915 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -930,6 +930,7 @@ 930 930 )))|(% style="width:157px" %)OK 931 931 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 932 932 Set Transmit Interval 920 + 933 933 trigger by rising edge. 934 934 )))|(% style="width:157px" %)OK 935 935 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -947,7 +947,6 @@ 947 947 948 948 === 3.3.4 Set Power Output Duration === 949 949 950 - 951 951 Control the output duration 5V . Before each sampling, device will 952 952 953 953 ~1. first enable the power output to external sensor, ... ... @@ -979,7 +979,6 @@ 979 979 980 980 === 3.3.5 Set Weighing parameters === 981 981 982 - 983 983 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 984 984 985 985 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1004,7 +1004,6 @@ 1004 1004 1005 1005 === 3.3.6 Set Digital pulse count value === 1006 1006 1007 - 1008 1008 Feature: Set the pulse count value. 1009 1009 1010 1010 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1027,7 +1027,6 @@ 1027 1027 1028 1028 === 3.3.7 Set Workmode === 1029 1029 1030 - 1031 1031 Feature: Switch working mode. 1032 1032 1033 1033 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1079,7 +1079,6 @@ 1079 1079 1080 1080 == 6.1 Where can i find source code of SN50v3-LB? == 1081 1081 1082 - 1083 1083 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1084 1084 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1085 1085 ... ... @@ -1108,7 +1108,6 @@ 1108 1108 1109 1109 = 8. Packing Info = 1110 1110 1111 - 1112 1112 (% style="color:#037691" %)**Package Includes**: 1113 1113 1114 1114 * SN50v3-LB LoRaWAN Generic Node