<
From version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
To version < 43.45 >
edited by Xiaoling
on 2023/05/16 15:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -41,6 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 +
45 +
44 44  == 1.3 Specification ==
45 45  
46 46  
... ... @@ -78,6 +78,8 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
83 +
84 +
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 83  
... ... @@ -105,6 +105,8 @@
105 105  )))
106 106  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
112 +
113 +
108 108  == 1.6 BLE connection ==
109 109  
110 110  
... ... @@ -277,22 +277,21 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281 281  
282 282  For example:
283 283  
284 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 +1. All modes share the same Payload Explanation from HERE.
297 +1. By default, the device will send an uplink message every 20 minutes.
290 290  
291 -2. All modes share the same Payload Explanation from HERE.
292 292  
293 -3. By default, the device will send an uplink message every 20 minutes.
294 294  
295 -
296 296  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297 297  
298 298  
... ... @@ -299,7 +299,7 @@
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 301  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
303 303  |**Value**|Bat|(% style="width:191px" %)(((
304 304  Temperature(DS18B20)(PC13)
305 305  )))|(% style="width:78px" %)(((
... ... @@ -322,7 +322,7 @@
322 322  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
323 323  
324 324  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
325 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
326 326  |**Value**|BAT|(% style="width:196px" %)(((
327 327  Temperature(DS18B20)(PC13)
328 328  )))|(% style="width:87px" %)(((
... ... @@ -331,8 +331,7 @@
331 331  Digital in(PB15) & Digital Interrupt(PA8)
332 332  )))|(% style="width:208px" %)(((
333 333  Distance measure by:1) LIDAR-Lite V3HP
334 -Or
335 -2) Ultrasonic Sensor
339 +Or 2) Ultrasonic Sensor
336 336  )))|(% style="width:117px" %)Reserved
337 337  
338 338  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -345,7 +345,7 @@
345 345  
346 346  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347 347  
348 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
352 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
349 349  
350 350  [[image:image-20230512173903-6.png||height="596" width="715"]]
351 351  
... ... @@ -371,7 +371,7 @@
371 371  
372 372  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 373  
374 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375 375  
376 376  [[image:image-20230512180609-7.png||height="555" width="802"]]
377 377  
... ... @@ -378,7 +378,7 @@
378 378  
379 379  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 380  
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382 382  
383 383  [[image:image-20230513105207-4.png||height="469" width="802"]]
384 384  
... ... @@ -391,7 +391,7 @@
391 391  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 392  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 395  |**Value**|(% style="width:68px" %)(((
396 396  ADC1(PA4)
397 397  )))|(% style="width:75px" %)(((
... ... @@ -438,18 +438,15 @@
438 438  
439 439  Each HX711 need to be calibrated before used. User need to do below two steps:
440 440  
441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
445 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
446 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 443  1. (((
444 444  Weight has 4 bytes, the unit is g.
445 -
446 -
447 -
448 448  )))
449 449  
450 450  For example:
451 451  
452 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
453 +**AT+GETSENSORVALUE =0**
453 453  
454 454  Response:  Weight is 401 g
455 455  
... ... @@ -460,11 +460,13 @@
460 460  **Size(bytes)**
461 461  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 462  |**Value**|BAT|(% style="width:193px" %)(((
463 -Temperature(DS18B20)(PC13)
464 +Temperature(DS18B20)
465 +(PC13)
464 464  )))|(% style="width:85px" %)(((
465 465  ADC(PA4)
466 466  )))|(% style="width:186px" %)(((
467 -Digital in(PB15) & Digital Interrupt(PA8)
469 +Digital in(PB15) &
470 +Digital Interrupt(PA8)
468 468  )))|(% style="width:100px" %)Weight
469 469  
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -480,11 +480,10 @@
480 480  
481 481  [[image:image-20230512181814-9.png||height="543" width="697"]]
482 482  
483 -
484 484  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485 485  
486 486  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 488  |**Value**|BAT|(% style="width:256px" %)(((
489 489  Temperature(DS18B20)(PC13)
490 490  )))|(% style="width:108px" %)(((
... ... @@ -524,7 +524,7 @@
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 525  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 526  **Size(bytes)**
527 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
528 528  |**Value**|BAT|(% style="width:207px" %)(((
529 529  Temperature(DS18B20)
530 530  (PC13)
... ... @@ -547,19 +547,19 @@
547 547  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 548  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
549 549  **Size(bytes)**
550 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
551 551  |**Value**|BAT|(((
552 -Temperature
553 -(DS18B20)(PC13)
554 +Temperature1(DS18B20)
555 +(PC13)
554 554  )))|(((
555 -Temperature2
556 -(DS18B20)(PB9)
557 +Temperature2(DS18B20)
558 +(PB9)
557 557  )))|(((
558 558  Digital Interrupt
559 559  (PB15)
560 560  )))|(% style="width:193px" %)(((
561 -Temperature3
562 -(DS18B20)(PB8)
563 +Temperature3(DS18B20)
564 +(PB8)
563 563  )))|(% style="width:78px" %)(((
564 564  Count1(PA8)
565 565  )))|(% style="width:78px" %)(((
... ... @@ -593,13 +593,13 @@
593 593  
594 594  The payload decoder function for TTN V3 are here:
595 595  
596 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597 597  
598 598  
599 599  ==== 2.3.3.1 Battery Info ====
600 600  
601 601  
602 -Check the battery voltage for SN50v3-LB.
604 +Check the battery voltage for SN50v3.
603 603  
604 604  Ex1: 0x0B45 = 2885mV
605 605  
... ... @@ -617,7 +617,6 @@
617 617  
618 618  [[image:image-20230512180718-8.png||height="538" width="647"]]
619 619  
620 -
621 621  (% style="color:blue" %)**Example**:
622 622  
623 623  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -629,7 +629,6 @@
629 629  
630 630  ==== 2.3.3.3 Digital Input ====
631 631  
632 -
633 633  The digital input for pin PB15,
634 634  
635 635  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -639,14 +639,11 @@
639 639  (((
640 640  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641 641  
642 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 -
644 -
642 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
645 645  )))
646 646  
647 647  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
648 648  
649 -
650 650  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
651 651  
652 652  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -653,20 +653,17 @@
653 653  
654 654  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
655 655  
653 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
656 656  
657 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
658 658  
659 -
660 660  ==== 2.3.3.5 Digital Interrupt ====
661 661  
658 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
662 662  
663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
664 -
665 665  (% style="color:blue" %)** Interrupt connection method:**
666 666  
667 667  [[image:image-20230513105351-5.png||height="147" width="485"]]
668 668  
669 -
670 670  (% style="color:blue" %)**Example to use with door sensor :**
671 671  
672 672  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -673,23 +673,22 @@
673 673  
674 674  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
675 675  
676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
670 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
677 677  
672 +(% style="color:blue" %)** Below is the installation example:**
678 678  
679 -(% style="color:blue" %)**Below is the installation example:**
674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
680 680  
681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682 -
683 683  * (((
684 -One pin to SN50v3-LB's PA8 pin
677 +One pin to SN50_v3's PA8 pin
685 685  )))
686 686  * (((
687 -The other pin to SN50v3-LB's VDD pin
680 +The other pin to SN50_v3's VDD pin
688 688  )))
689 689  
690 690  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
691 691  
692 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
685 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
693 693  
694 694  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
695 695  
... ... @@ -701,13 +701,12 @@
701 701  
702 702  The command is:
703 703  
704 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
697 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
705 705  
706 706  Below shows some screen captures in TTN V3:
707 707  
708 708  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
709 709  
710 -
711 711  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
712 712  
713 713  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -715,16 +715,15 @@
715 715  
716 716  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
717 717  
718 -
719 719  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
720 720  
721 721  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
722 722  
723 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
714 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
724 724  
725 -
726 726  Below is the connection to SHT20/ SHT31. The connection is as below:
727 727  
718 +
728 728  [[image:image-20230513103633-3.png||height="448" width="716"]]
729 729  
730 730  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -744,16 +744,14 @@
744 744  
745 745  ==== 2.3.3.7  ​Distance Reading ====
746 746  
747 -
748 748  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
749 749  
750 750  
751 751  ==== 2.3.3.8 Ultrasonic Sensor ====
752 752  
753 -
754 754  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755 755  
756 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
745 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
757 757  
758 758  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
759 759  
... ... @@ -761,9 +761,8 @@
761 761  
762 762  [[image:image-20230512173903-6.png||height="596" width="715"]]
763 763  
753 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
764 764  
765 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 -
767 767  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
768 768  
769 769  **Example:**
... ... @@ -771,17 +771,16 @@
771 771  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
772 772  
773 773  
762 +
774 774  ==== 2.3.3.9  Battery Output - BAT pin ====
775 775  
776 -
777 777  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
778 778  
779 779  
780 780  ==== 2.3.3.10  +5V Output ====
781 781  
770 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
782 782  
783 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 -
785 785  The 5V output time can be controlled by AT Command.
786 786  
787 787  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -791,20 +791,18 @@
791 791  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
792 792  
793 793  
781 +
794 794  ==== 2.3.3.11  BH1750 Illumination Sensor ====
795 795  
796 -
797 797  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
798 798  
799 799  [[image:image-20230512172447-4.png||height="416" width="712"]]
800 800  
801 -
802 802  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803 803  
804 804  
805 805  ==== 2.3.3.12  Working MOD ====
806 806  
807 -
808 808  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809 809  
810 810  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -821,6 +821,7 @@
821 821  * 7: MOD8
822 822  * 8: MOD9
823 823  
809 +
824 824  == 2.4 Payload Decoder file ==
825 825  
826 826  
... ... @@ -831,6 +831,7 @@
831 831  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
832 832  
833 833  
820 +
834 834  == 2.5 Frequency Plans ==
835 835  
836 836  
... ... @@ -866,12 +866,11 @@
866 866  == 3.3 Commands special design for SN50v3-LB ==
867 867  
868 868  
869 -These commands only valid for SN50v3-LB, as below:
856 +These commands only valid for S31x-LB, as below:
870 870  
871 871  
872 872  === 3.3.1 Set Transmit Interval Time ===
873 873  
874 -
875 875  Feature: Change LoRaWAN End Node Transmit Interval.
876 876  
877 877  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -897,9 +897,9 @@
897 897  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
898 898  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
899 899  
886 +
900 900  === 3.3.2 Get Device Status ===
901 901  
902 -
903 903  Send a LoRaWAN downlink to ask the device to send its status.
904 904  
905 905  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -909,7 +909,6 @@
909 909  
910 910  === 3.3.3 Set Interrupt Mode ===
911 911  
912 -
913 913  Feature, Set Interrupt mode for GPIO_EXIT.
914 914  
915 915  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -930,6 +930,7 @@
930 930  )))|(% style="width:157px" %)OK
931 931  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
932 932  Set Transmit Interval
918 +
933 933  trigger by rising edge.
934 934  )))|(% style="width:157px" %)OK
935 935  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -945,9 +945,9 @@
945 945  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
946 946  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
947 947  
934 +
948 948  === 3.3.4 Set Power Output Duration ===
949 949  
950 -
951 951  Control the output duration 5V . Before each sampling, device will
952 952  
953 953  ~1. first enable the power output to external sensor,
... ... @@ -977,9 +977,9 @@
977 977  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
978 978  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
979 979  
966 +
980 980  === 3.3.5 Set Weighing parameters ===
981 981  
982 -
983 983  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
984 984  
985 985  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1002,9 +1002,9 @@
1002 1002  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1003 1003  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1004 1004  
991 +
1005 1005  === 3.3.6 Set Digital pulse count value ===
1006 1006  
1007 -
1008 1008  Feature: Set the pulse count value.
1009 1009  
1010 1010  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1025,9 +1025,9 @@
1025 1025  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1026 1026  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1027 1027  
1014 +
1028 1028  === 3.3.7 Set Workmode ===
1029 1029  
1030 -
1031 1031  Feature: Switch working mode.
1032 1032  
1033 1033  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1049,6 +1049,7 @@
1049 1049  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1050 1050  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1051 1051  
1038 +
1052 1052  = 4. Battery & Power Consumption =
1053 1053  
1054 1054  
... ... @@ -1079,7 +1079,6 @@
1079 1079  
1080 1080  == 6.1 Where can i find source code of SN50v3-LB? ==
1081 1081  
1082 -
1083 1083  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1084 1084  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1085 1085  
... ... @@ -1108,7 +1108,6 @@
1108 1108  
1109 1109  = 8. ​Packing Info =
1110 1110  
1111 -
1112 1112  (% style="color:#037691" %)**Package Includes**:
1113 1113  
1114 1114  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0