Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -277,22 +277,19 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)284 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 +1. All modes share the same Payload Explanation from HERE. 291 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 - 293 -3. By default, the device will send an uplink message every 20 minutes. 294 - 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 298 ... ... @@ -299,7 +299,7 @@ 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 303 303 |**Value**|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( ... ... @@ -315,14 +315,12 @@ 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 316 316 317 317 318 - 319 319 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 320 320 321 - 322 322 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 323 323 324 324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 325 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**320 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 326 326 |**Value**|BAT|(% style="width:196px" %)((( 327 327 Temperature(DS18B20)(PC13) 328 328 )))|(% style="width:87px" %)((( ... ... @@ -331,25 +331,21 @@ 331 331 Digital in(PB15) & Digital Interrupt(PA8) 332 332 )))|(% style="width:208px" %)((( 333 333 Distance measure by:1) LIDAR-Lite V3HP 334 -Or 335 -2) Ultrasonic Sensor 329 +Or 2) Ultrasonic Sensor 336 336 )))|(% style="width:117px" %)Reserved 337 337 338 338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 339 339 340 - 341 341 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 342 342 343 343 [[image:image-20230512173758-5.png||height="563" width="712"]] 344 344 345 - 346 346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 347 347 348 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**340 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 349 349 350 350 [[image:image-20230512173903-6.png||height="596" width="715"]] 351 351 352 - 353 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 354 354 355 355 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) ... ... @@ -368,17 +368,15 @@ 368 368 369 369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 370 370 371 - 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**364 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 375 375 376 376 [[image:image-20230512180609-7.png||height="555" width="802"]] 377 377 378 - 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 382 382 383 383 [[image:image-20230513105207-4.png||height="469" width="802"]] 384 384 ... ... @@ -385,13 +385,12 @@ 385 385 386 386 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 387 387 388 - 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1382 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 395 395 |**Value**|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( ... ... @@ -430,26 +430,21 @@ 430 430 [[image:image-20230513134006-1.png||height="559" width="736"]] 431 431 432 432 433 - 434 434 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 435 435 436 - 437 437 [[image:image-20230512164658-2.png||height="532" width="729"]] 438 438 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.427 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 428 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 443 1. ((( 444 444 Weight has 4 bytes, the unit is g. 445 - 446 - 447 - 448 448 ))) 449 449 450 450 For example: 451 451 452 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**435 +**AT+GETSENSORVALUE =0** 453 453 454 454 Response: Weight is 401 g 455 455 ... ... @@ -460,20 +460,20 @@ 460 460 **Size(bytes)** 461 461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 462 462 |**Value**|BAT|(% style="width:193px" %)((( 463 -Temperature(DS18B20)(PC13) 446 +Temperature(DS18B20) 447 +(PC13) 464 464 )))|(% style="width:85px" %)((( 465 465 ADC(PA4) 466 466 )))|(% style="width:186px" %)((( 467 -Digital in(PB15) & Digital Interrupt(PA8) 451 +Digital in(PB15) & 452 +Digital Interrupt(PA8) 468 468 )))|(% style="width:100px" %)Weight 469 469 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 - 477 477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 478 478 479 479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -480,11 +480,10 @@ 480 480 481 481 [[image:image-20230512181814-9.png||height="543" width="697"]] 482 482 466 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 483 483 484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 - 486 486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**469 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 488 |**Value**|BAT|(% style="width:256px" %)((( 489 489 Temperature(DS18B20)(PC13) 490 490 )))|(% style="width:108px" %)((( ... ... @@ -498,10 +498,8 @@ 498 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 499 499 500 500 501 - 502 502 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 503 503 504 - 505 505 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 506 506 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 507 507 **Size(bytes)** ... ... @@ -517,14 +517,12 @@ 517 517 518 518 [[image:image-20230513111203-7.png||height="324" width="975"]] 519 519 520 - 521 521 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 522 522 523 - 524 524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 525 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 526 526 **Size(bytes)** 527 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2505 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 528 528 |**Value**|BAT|(% style="width:207px" %)((( 529 529 Temperature(DS18B20) 530 530 (PC13) ... ... @@ -543,23 +543,22 @@ 543 543 544 544 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 545 545 546 - 547 547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 548 548 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 549 549 **Size(bytes)** 550 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4527 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 551 551 |**Value**|BAT|((( 552 -Temperature 553 -( DS18B20)(PC13)529 +Temperature1(DS18B20) 530 +(PC13) 554 554 )))|((( 555 -Temperature2 556 -( DS18B20)(PB9)532 +Temperature2(DS18B20) 533 +(PB9) 557 557 )))|((( 558 558 Digital Interrupt 559 559 (PB15) 560 560 )))|(% style="width:193px" %)((( 561 -Temperature3 562 -( DS18B20)(PB8)538 +Temperature3(DS18B20) 539 +(PB8) 563 563 )))|(% style="width:78px" %)((( 564 564 Count1(PA8) 565 565 )))|(% style="width:78px" %)((( ... ... @@ -584,9 +584,9 @@ 584 584 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 585 585 586 586 564 + 587 587 === 2.3.3 Decode payload === 588 588 589 - 590 590 While using TTN V3 network, you can add the payload format to decode the payload. 591 591 592 592 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -593,14 +593,13 @@ 593 593 594 594 The payload decoder function for TTN V3 are here: 595 595 596 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]573 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 597 598 598 599 599 ==== 2.3.3.1 Battery Info ==== 600 600 578 +Check the battery voltage for SN50v3. 601 601 602 -Check the battery voltage for SN50v3-LB. 603 - 604 604 Ex1: 0x0B45 = 2885mV 605 605 606 606 Ex2: 0x0B49 = 2889mV ... ... @@ -608,16 +608,14 @@ 608 608 609 609 ==== 2.3.3.2 Temperature (DS18B20) ==== 610 610 611 - 612 612 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 613 613 614 -More DS18B20 can check the [[3 DS18B20 mode>> ||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]589 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 615 615 616 616 (% style="color:blue" %)**Connection:** 617 617 618 618 [[image:image-20230512180718-8.png||height="538" width="647"]] 619 619 620 - 621 621 (% style="color:blue" %)**Example**: 622 622 623 623 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -629,7 +629,6 @@ 629 629 630 630 ==== 2.3.3.3 Digital Input ==== 631 631 632 - 633 633 The digital input for pin PB15, 634 634 635 635 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -639,14 +639,11 @@ 639 639 ((( 640 640 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 641 641 642 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 643 - 644 - 615 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 645 645 ))) 646 646 647 647 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 648 648 649 - 650 650 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 651 651 652 652 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -653,20 +653,17 @@ 653 653 654 654 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 655 655 626 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 656 656 657 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 658 658 659 - 660 660 ==== 2.3.3.5 Digital Interrupt ==== 661 661 631 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 662 662 663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 664 - 665 665 (% style="color:blue" %)** Interrupt connection method:** 666 666 667 667 [[image:image-20230513105351-5.png||height="147" width="485"]] 668 668 669 - 670 670 (% style="color:blue" %)**Example to use with door sensor :** 671 671 672 672 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -673,23 +673,22 @@ 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 675 675 676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.643 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 677 677 645 +(% style="color:blue" %)** Below is the installation example:** 678 678 679 - (%style="color:blue"%)**Belowisthe installationexample:**647 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 680 680 681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 682 - 683 683 * ((( 684 -One pin to SN50v3 -LB's PA8 pin650 +One pin to SN50_v3's PA8 pin 685 685 ))) 686 686 * ((( 687 -The other pin to SN50v3 -LB's VDD pin653 +The other pin to SN50_v3's VDD pin 688 688 ))) 689 689 690 690 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 691 691 692 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.658 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 693 694 694 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 695 695 ... ... @@ -701,13 +701,12 @@ 701 701 702 702 The command is: 703 703 704 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 670 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 705 705 706 706 Below shows some screen captures in TTN V3: 707 707 708 708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 709 709 710 - 711 711 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 712 712 713 713 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -715,16 +715,15 @@ 715 715 716 716 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 717 717 718 - 719 719 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 720 720 721 721 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 722 722 723 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**687 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 724 724 725 - 726 726 Below is the connection to SHT20/ SHT31. The connection is as below: 727 727 691 + 728 728 [[image:image-20230513103633-3.png||height="448" width="716"]] 729 729 730 730 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -744,16 +744,14 @@ 744 744 745 745 ==== 2.3.3.7 Distance Reading ==== 746 746 747 - 748 748 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 749 749 750 750 751 751 ==== 2.3.3.8 Ultrasonic Sensor ==== 752 752 753 - 754 754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 755 755 756 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.718 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 757 757 758 758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 759 759 ... ... @@ -761,9 +761,8 @@ 761 761 762 762 [[image:image-20230512173903-6.png||height="596" width="715"]] 763 763 726 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 764 764 765 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 - 767 767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 768 768 769 769 **Example:** ... ... @@ -771,17 +771,16 @@ 771 771 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 772 772 773 773 735 + 774 774 ==== 2.3.3.9 Battery Output - BAT pin ==== 775 775 776 - 777 777 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 778 778 779 779 780 780 ==== 2.3.3.10 +5V Output ==== 781 781 743 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 782 782 783 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 - 785 785 The 5V output time can be controlled by AT Command. 786 786 787 787 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -791,20 +791,18 @@ 791 791 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 792 792 793 793 754 + 794 794 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 795 795 796 - 797 797 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 798 798 799 799 [[image:image-20230512172447-4.png||height="416" width="712"]] 800 800 801 - 802 802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 803 803 804 804 805 805 ==== 2.3.3.12 Working MOD ==== 806 806 807 - 808 808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 809 809 810 810 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -821,6 +821,7 @@ 821 821 * 7: MOD8 822 822 * 8: MOD9 823 823 782 + 824 824 == 2.4 Payload Decoder file == 825 825 826 826 ... ... @@ -831,6 +831,7 @@ 831 831 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 832 832 833 833 793 + 834 834 == 2.5 Frequency Plans == 835 835 836 836 ... ... @@ -866,12 +866,11 @@ 866 866 == 3.3 Commands special design for SN50v3-LB == 867 867 868 868 869 -These commands only valid for S N50v3-LB, as below:829 +These commands only valid for S31x-LB, as below: 870 870 871 871 872 872 === 3.3.1 Set Transmit Interval Time === 873 873 874 - 875 875 Feature: Change LoRaWAN End Node Transmit Interval. 876 876 877 877 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -897,9 +897,9 @@ 897 897 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 898 898 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 899 899 859 + 900 900 === 3.3.2 Get Device Status === 901 901 902 - 903 903 Send a LoRaWAN downlink to ask the device to send its status. 904 904 905 905 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -909,7 +909,6 @@ 909 909 910 910 === 3.3.3 Set Interrupt Mode === 911 911 912 - 913 913 Feature, Set Interrupt mode for GPIO_EXIT. 914 914 915 915 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -930,6 +930,7 @@ 930 930 )))|(% style="width:157px" %)OK 931 931 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 932 932 Set Transmit Interval 891 + 933 933 trigger by rising edge. 934 934 )))|(% style="width:157px" %)OK 935 935 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -945,9 +945,9 @@ 945 945 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 946 946 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 947 947 907 + 948 948 === 3.3.4 Set Power Output Duration === 949 949 950 - 951 951 Control the output duration 5V . Before each sampling, device will 952 952 953 953 ~1. first enable the power output to external sensor, ... ... @@ -977,9 +977,9 @@ 977 977 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 978 978 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 979 979 939 + 980 980 === 3.3.5 Set Weighing parameters === 981 981 982 - 983 983 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 984 984 985 985 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1002,9 +1002,9 @@ 1002 1002 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1003 1003 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1004 1004 964 + 1005 1005 === 3.3.6 Set Digital pulse count value === 1006 1006 1007 - 1008 1008 Feature: Set the pulse count value. 1009 1009 1010 1010 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1025,9 +1025,9 @@ 1025 1025 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1026 1026 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1027 1027 987 + 1028 1028 === 3.3.7 Set Workmode === 1029 1029 1030 - 1031 1031 Feature: Switch working mode. 1032 1032 1033 1033 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1049,6 +1049,7 @@ 1049 1049 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1050 1050 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1051 1051 1011 + 1052 1052 = 4. Battery & Power Consumption = 1053 1053 1054 1054 ... ... @@ -1079,7 +1079,6 @@ 1079 1079 1080 1080 == 6.1 Where can i find source code of SN50v3-LB? == 1081 1081 1082 - 1083 1083 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1084 1084 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1085 1085 ... ... @@ -1108,7 +1108,6 @@ 1108 1108 1109 1109 = 8. Packing Info = 1110 1110 1111 - 1112 1112 (% style="color:#037691" %)**Package Includes**: 1113 1113 1114 1114 * SN50v3-LB LoRaWAN Generic Node