<
From version < 44.1 >
edited by Ellie Zhang
on 2023/05/17 15:29
To version < 87.28 >
edited by Xiaoling
on 2024/01/03 16:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Ellie
1 +XWiki.Xiaoling
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,15 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
51 51  * Operating Temperature: -40 ~~ 85°C
52 52  
53 53  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -91,11 +91,11 @@
91 91  == 1.5 Button & LEDs ==
92 92  
93 93  
94 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
95 95  
96 96  
97 97  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
99 99  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 100  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 101  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -107,11 +107,10 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
114 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
115 115  
116 116  
117 117  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -126,35 +126,40 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230513102034-2.png]]
131 +[[image:image-20230610163213-1.png||height="404" width="699"]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
133 133  
136 +=== 1.8.1 for LB version ===
134 134  
135 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136 136  
137 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 138  
141 +
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
144 +=== 1.8.2 for LS version ===
141 141  
142 -== Hole Option ==
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
143 143  
144 144  
145 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 +== 1.9 Hole Option ==
146 146  
151 +
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 +
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148 148  
149 149  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150 150  
151 151  
152 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
153 153  
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,12 +162,12 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
169 169  
170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
171 171  
172 172  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
173 173  
... ... @@ -196,10 +196,10 @@
196 196  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197 197  
198 198  
199 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
200 200  
201 201  
202 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
203 203  
204 204  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205 205  
... ... @@ -211,52 +211,52 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
218 218  
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -*0x01: EU868
240 +0x01: EU868
234 234  
235 -*0x02: US915
242 +0x02: US915
236 236  
237 -*0x03: IN865
244 +0x03: IN865
238 238  
239 -*0x04: AU915
246 +0x04: AU915
240 240  
241 -*0x05: KZ865
248 +0x05: KZ865
242 242  
243 -*0x06: RU864
250 +0x06: RU864
244 244  
245 -*0x07: AS923
252 +0x07: AS923
246 246  
247 -*0x08: AS923-1
254 +0x08: AS923-1
248 248  
249 -*0x09: AS923-2
256 +0x09: AS923-2
250 250  
251 -*0x0a: AS923-3
258 +0x0a: AS923-3
252 252  
253 -*0x0b: CN470
260 +0x0b: CN470
254 254  
255 -*0x0c: EU433
262 +0x0c: EU433
256 256  
257 -*0x0d: KR920
264 +0x0d: KR920
258 258  
259 -*0x0e: MA869
266 +0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -280,20 +280,22 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
284 284  
285 285  For example:
286 286  
287 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 -1. All modes share the same Payload Explanation from HERE.
294 -1. By default, the device will send an uplink message every 20 minutes.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
295 295  
301 +2. All modes share the same Payload Explanation from HERE.
296 296  
303 +3. By default, the device will send an uplink message every 20 minutes.
304 +
305 +
297 297  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
298 298  
299 299  
... ... @@ -300,8 +300,8 @@
300 300  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301 301  
302 302  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
304 -|**Value**|Bat|(% style="width:191px" %)(((
312 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
313 +|Value|Bat|(% style="width:191px" %)(((
305 305  Temperature(DS18B20)(PC13)
306 306  )))|(% style="width:78px" %)(((
307 307  ADC(PA4)
... ... @@ -316,7 +316,6 @@
316 316  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317 317  
318 318  
319 -
320 320  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321 321  
322 322  
... ... @@ -323,8 +323,8 @@
323 323  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 324  
325 325  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 -|**Value**|BAT|(% style="width:196px" %)(((
334 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
335 +|Value|BAT|(% style="width:196px" %)(((
328 328  Temperature(DS18B20)(PC13)
329 329  )))|(% style="width:87px" %)(((
330 330  ADC(PA4)
... ... @@ -331,9 +331,8 @@
331 331  )))|(% style="width:189px" %)(((
332 332  Digital in(PB15) & Digital Interrupt(PA8)
333 333  )))|(% style="width:208px" %)(((
334 -Distance measure by:1) LIDAR-Lite V3HP
335 -Or
336 -2) Ultrasonic Sensor
342 +Distance measure by: 1) LIDAR-Lite V3HP
343 +Or 2) Ultrasonic Sensor
337 337  )))|(% style="width:117px" %)Reserved
338 338  
339 339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -354,8 +354,8 @@
354 354  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355 355  
356 356  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 -|**Value**|BAT|(% style="width:183px" %)(((
364 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
365 +|Value|BAT|(% style="width:183px" %)(((
359 359  Temperature(DS18B20)(PC13)
360 360  )))|(% style="width:173px" %)(((
361 361  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -363,8 +363,7 @@
363 363  ADC(PA4)
364 364  )))|(% style="width:323px" %)(((
365 365  Distance measure by:1)TF-Mini plus LiDAR
366 -Or 
367 -2) TF-Luna LiDAR
373 +Or 2) TF-Luna LiDAR
368 368  )))|(% style="width:188px" %)Distance signal  strength
369 369  
370 370  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -381,7 +381,7 @@
381 381  
382 382  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383 383  
384 -[[image:image-20230513105207-4.png||height="469" width="802"]]
390 +[[image:image-20230610170047-1.png||height="452" width="799"]]
385 385  
386 386  
387 387  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -390,10 +390,10 @@
390 390  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391 391  
392 392  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
394 394  **Size(bytes)**
395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 -|**Value**|(% style="width:68px" %)(((
401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
402 +|Value|(% style="width:68px" %)(((
397 397  ADC1(PA4)
398 398  )))|(% style="width:75px" %)(((
399 399  ADC2(PA5)
... ... @@ -416,8 +416,8 @@
416 416  This mode has total 11 bytes. As shown below:
417 417  
418 418  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 -|**Value**|BAT|(% style="width:186px" %)(((
425 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
426 +|Value|BAT|(% style="width:186px" %)(((
421 421  Temperature1(DS18B20)(PC13)
422 422  )))|(% style="width:82px" %)(((
423 423  ADC(PA4)
... ... @@ -428,10 +428,10 @@
428 428  
429 429  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430 430  
437 +
431 431  [[image:image-20230513134006-1.png||height="559" width="736"]]
432 432  
433 433  
434 -
435 435  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436 436  
437 437  
... ... @@ -439,8 +439,8 @@
439 439  
440 440  Each HX711 need to be calibrated before used. User need to do below two steps:
441 441  
442 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
443 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
444 444  1. (((
445 445  Weight has 4 bytes, the unit is g.
446 446  
... ... @@ -450,7 +450,7 @@
450 450  
451 451  For example:
452 452  
453 -**AT+GETSENSORVALUE =0**
459 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
454 454  
455 455  Response:  Weight is 401 g
456 456  
... ... @@ -457,10 +457,10 @@
457 457  Check the response of this command and adjust the value to match the real value for thing.
458 458  
459 459  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
461 461  **Size(bytes)**
462 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 -|**Value**|BAT|(% style="width:193px" %)(((
468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
469 +|Value|BAT|(% style="width:193px" %)(((
464 464  Temperature(DS18B20)(PC13)
465 465  )))|(% style="width:85px" %)(((
466 466  ADC(PA4)
... ... @@ -471,7 +471,6 @@
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472 472  
473 473  
474 -
475 475  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
476 476  
477 477  
... ... @@ -485,8 +485,8 @@
485 485  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
486 486  
487 487  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
488 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 -|**Value**|BAT|(% style="width:256px" %)(((
493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
494 +|Value|BAT|(% style="width:256px" %)(((
490 490  Temperature(DS18B20)(PC13)
491 491  )))|(% style="width:108px" %)(((
492 492  ADC(PA4)
... ... @@ -499,15 +499,14 @@
499 499  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
500 500  
501 501  
502 -
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
505 505  
506 506  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 -|**Value**|BAT|(% style="width:188px" %)(((
513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
514 +|Value|BAT|(% style="width:188px" %)(((
511 511  Temperature(DS18B20)
512 512  (PC13)
513 513  )))|(% style="width:83px" %)(((
... ... @@ -523,10 +523,10 @@
523 523  
524 524  
525 525  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 -|**Value**|BAT|(% style="width:207px" %)(((
532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
533 +|Value|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
532 532  )))|(% style="width:94px" %)(((
... ... @@ -546,10 +546,10 @@
546 546  
547 547  
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 -|**Value**|BAT|(((
555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
556 +|Value|BAT|(((
553 553  Temperature
554 554  (DS18B20)(PC13)
555 555  )))|(((
... ... @@ -585,6 +585,108 @@
585 585  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
593 +
594 +
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 +
597 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598 +
599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
600 +
601 +
602 +===== 2.3.2.10.a  Uplink, PWM input capture =====
603 +
604 +
605 +[[image:image-20230817172209-2.png||height="439" width="683"]]
606 +
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
609 +|Value|Bat|(% style="width:191px" %)(((
610 +Temperature(DS18B20)(PC13)
611 +)))|(% style="width:78px" %)(((
612 +ADC(PA4)
613 +)))|(% style="width:135px" %)(((
614 +PWM_Setting
615 +&Digital Interrupt(PA8)
616 +)))|(% style="width:70px" %)(((
617 +Pulse period
618 +)))|(% style="width:89px" %)(((
619 +Duration of high level
620 +)))
621 +
622 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
623 +
624 +
625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
626 +
627 +**Frequency:**
628 +
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
631 +
632 +(% class="MsoNormal" %)
633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
634 +
635 +
636 +(% class="MsoNormal" %)
637 +**Duty cycle:**
638 +
639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 +
641 +[[image:image-20230818092200-1.png||height="344" width="627"]]
642 +
643 +
644 +===== 2.3.2.10.b  Uplink, PWM output =====
645 +
646 +
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
648 +
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 +
651 +a is the time delay of the output, the unit is ms.
652 +
653 +b is the output frequency, the unit is HZ.
654 +
655 +c is the duty cycle of the output, the unit is %.
656 +
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 +
659 +aa is the time delay of the output, the unit is ms.
660 +
661 +bb is the output frequency, the unit is HZ.
662 +
663 +cc is the duty cycle of the output, the unit is %.
664 +
665 +
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 +
668 +The oscilloscope displays as follows:
669 +
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 +
672 +
673 +===== 2.3.2.10.c  Downlink, PWM output =====
674 +
675 +
676 +[[image:image-20230817173800-3.png||height="412" width="685"]]
677 +
678 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679 +
680 + xx xx xx is the output frequency, the unit is HZ.
681 +
682 + yy is the duty cycle of the output, the unit is %.
683 +
684 + zz zz is the time delay of the output, the unit is ms.
685 +
686 +
687 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688 +
689 +The oscilloscope displays as follows:
690 +
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
692 +
693 +
588 588  === 2.3.3  ​Decode payload ===
589 589  
590 590  
... ... @@ -594,13 +594,13 @@
594 594  
595 595  The payload decoder function for TTN V3 are here:
596 596  
597 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 598  
599 599  
600 600  ==== 2.3.3.1 Battery Info ====
601 601  
602 602  
603 -Check the battery voltage for SN50v3.
709 +Check the battery voltage for SN50v3-LB/LS.
604 604  
605 605  Ex1: 0x0B45 = 2885mV
606 606  
... ... @@ -648,19 +648,26 @@
648 648  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649 649  
650 650  
651 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
757 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
652 652  
653 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
759 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
763 +
657 657  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
658 658  
659 659  
767 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
768 +
769 +[[image:image-20230811113449-1.png||height="370" width="608"]]
770 +
771 +
772 +
660 660  ==== 2.3.3.5 Digital Interrupt ====
661 661  
662 662  
663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
664 664  
665 665  (% style="color:blue" %)** Interrupt connection method:**
666 666  
... ... @@ -673,18 +673,18 @@
673 673  
674 674  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
675 675  
676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
677 677  
678 678  
679 679  (% style="color:blue" %)**Below is the installation example:**
680 680  
681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
682 682  
683 683  * (((
684 -One pin to SN50_v3's PA8 pin
797 +One pin to SN50v3-LB/LS's PA8 pin
685 685  )))
686 686  * (((
687 -The other pin to SN50_v3's VDD pin
800 +The other pin to SN50v3-LB/LS's VDD pin
688 688  )))
689 689  
690 690  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -701,7 +701,7 @@
701 701  
702 702  The command is:
703 703  
704 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
817 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
705 705  
706 706  Below shows some screen captures in TTN V3:
707 707  
... ... @@ -708,7 +708,7 @@
708 708  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
709 709  
710 710  
711 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
824 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
712 712  
713 713  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
714 714  
... ... @@ -720,12 +720,13 @@
720 720  
721 721  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
722 722  
723 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
724 724  
838 +
725 725  Below is the connection to SHT20/ SHT31. The connection is as below:
726 726  
841 +[[image:image-20230610170152-2.png||height="501" width="846"]]
727 727  
728 -[[image:image-20230513103633-3.png||height="448" width="716"]]
729 729  
730 730  The device will be able to get the I2C sensor data now and upload to IoT Server.
731 731  
... ... @@ -753,7 +753,7 @@
753 753  
754 754  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755 755  
756 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
757 757  
758 758  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
759 759  
... ... @@ -762,7 +762,7 @@
762 762  [[image:image-20230512173903-6.png||height="596" width="715"]]
763 763  
764 764  
765 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 766  
767 767  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
768 768  
... ... @@ -774,13 +774,13 @@
774 774  ==== 2.3.3.9  Battery Output - BAT pin ====
775 775  
776 776  
777 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
778 778  
779 779  
780 780  ==== 2.3.3.10  +5V Output ====
781 781  
782 782  
783 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
784 784  
785 785  The 5V output time can be controlled by AT Command.
786 786  
... ... @@ -788,7 +788,7 @@
788 788  
789 789  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
790 790  
791 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
905 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
792 792  
793 793  
794 794  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -802,9 +802,37 @@
802 802  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803 803  
804 804  
805 -==== 2.3.3.12  Working MOD ====
919 +==== 2.3.3.12  PWM MOD ====
806 806  
807 807  
922 +* (((
923 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 +)))
925 +* (((
926 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 +)))
928 +
929 + [[image:image-20230817183249-3.png||height="320" width="417"]]
930 +
931 +* (((
932 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 +)))
934 +* (((
935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 +)))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 +
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 +
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 +
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
945 +)))
946 +
947 +==== 2.3.3.13  Working MOD ====
948 +
949 +
808 808  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809 809  
810 810  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -820,8 +820,8 @@
820 820  * 6: MOD7
821 821  * 7: MOD8
822 822  * 8: MOD9
965 +* 9: MOD10
823 823  
824 -
825 825  == 2.4 Payload Decoder file ==
826 826  
827 827  
... ... @@ -835,23 +835,22 @@
835 835  == 2.5 Frequency Plans ==
836 836  
837 837  
838 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
980 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
839 839  
840 840  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
841 841  
842 842  
843 -= 3. Configure SN50v3-LB =
985 += 3. Configure SN50v3-LB/LS =
844 844  
845 845  == 3.1 Configure Methods ==
846 846  
847 847  
848 -SN50v3-LB supports below configure method:
990 +SN50v3-LB/LS supports below configure method:
849 849  
850 850  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
851 851  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
852 852  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
853 853  
854 -
855 855  == 3.2 General Commands ==
856 856  
857 857  
... ... @@ -865,10 +865,10 @@
865 865  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
866 866  
867 867  
868 -== 3.3 Commands special design for SN50v3-LB ==
1009 +== 3.3 Commands special design for SN50v3-LB/LS ==
869 869  
870 870  
871 -These commands only valid for S31x-LB, as below:
1012 +These commands only valid for SN50v3-LB/LS, as below:
872 872  
873 873  
874 874  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -879,7 +879,7 @@
879 879  (% style="color:blue" %)**AT Command: AT+TDC**
880 880  
881 881  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
882 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1023 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
883 883  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
884 884  30000
885 885  OK
... ... @@ -899,15 +899,14 @@
899 899  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
900 900  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
901 901  
902 -
903 903  === 3.3.2 Get Device Status ===
904 904  
905 905  
906 906  Send a LoRaWAN downlink to ask the device to send its status.
907 907  
908 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1048 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
909 909  
910 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1050 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
911 911  
912 912  
913 913  === 3.3.3 Set Interrupt Mode ===
... ... @@ -915,10 +915,10 @@
915 915  
916 916  Feature, Set Interrupt mode for GPIO_EXIT.
917 917  
918 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1058 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
919 919  
920 920  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1061 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
922 922  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
923 923  0
924 924  OK
... ... @@ -948,7 +948,6 @@
948 948  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
949 949  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
950 950  
951 -
952 952  === 3.3.4 Set Power Output Duration ===
953 953  
954 954  
... ... @@ -963,7 +963,7 @@
963 963  (% style="color:blue" %)**AT Command: AT+5VT**
964 964  
965 965  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1105 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
967 967  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 968  500(default)
969 969  OK
... ... @@ -981,7 +981,6 @@
981 981  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
982 982  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
983 983  
984 -
985 985  === 3.3.5 Set Weighing parameters ===
986 986  
987 987  
... ... @@ -990,9 +990,9 @@
990 990  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
991 991  
992 992  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
993 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1131 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
994 994  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
995 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1133 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
996 996  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
997 997  
998 998  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1007,7 +1007,6 @@
1007 1007  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1008 1008  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1009 1009  
1010 -
1011 1011  === 3.3.6 Set Digital pulse count value ===
1012 1012  
1013 1013  
... ... @@ -1018,7 +1018,7 @@
1018 1018  (% style="color:blue" %)**AT Command: AT+SETCNT**
1019 1019  
1020 1020  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1021 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1158 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1022 1022  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1023 1023  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1024 1024  
... ... @@ -1031,7 +1031,6 @@
1031 1031  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1032 1032  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1033 1033  
1034 -
1035 1035  === 3.3.7 Set Workmode ===
1036 1036  
1037 1037  
... ... @@ -1040,7 +1040,7 @@
1040 1040  (% style="color:blue" %)**AT Command: AT+MOD**
1041 1041  
1042 1042  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1043 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1179 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1044 1044  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1045 1045  OK
1046 1046  )))
... ... @@ -1056,12 +1056,97 @@
1056 1056  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1057 1057  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1058 1058  
1195 +=== 3.3.8 PWM setting ===
1059 1059  
1060 -= 4. Battery & Power Consumption =
1061 1061  
1198 +Feature: Set the time acquisition unit for PWM input capture.
1062 1062  
1063 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1200 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1064 1064  
1202 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1203 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1204 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1205 +0(default)
1206 +OK
1207 +)))
1208 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1209 +OK
1210 +
1211 +)))
1212 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1213 +
1214 +(% style="color:blue" %)**Downlink Command: 0x0C**
1215 +
1216 +Format: Command Code (0x0C) followed by 1 bytes.
1217 +
1218 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1219 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1220 +
1221 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1222 +
1223 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1224 +
1225 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1226 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1227 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1228 +0,0,0(default)
1229 +OK
1230 +)))
1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 +OK
1233 +
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 +
1238 +
1239 +)))|(% style="width:137px" %)(((
1240 +OK
1241 +)))
1242 +
1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1245 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 +AT+PWMOUT=a,b,c
1247 +
1248 +
1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 +Set PWM output time, output frequency and output duty cycle.
1251 +
1252 +(((
1253 +
1254 +)))
1255 +
1256 +(((
1257 +
1258 +)))
1259 +)))|(% style="width:242px" %)(((
1260 +a: Output time (unit: seconds)
1261 +The value ranges from 0 to 65535.
1262 +When a=65535, PWM will always output.
1263 +)))
1264 +|(% style="width:242px" %)(((
1265 +b: Output frequency (unit: HZ)
1266 +)))
1267 +|(% style="width:242px" %)(((
1268 +c: Output duty cycle (unit: %)
1269 +The value ranges from 0 to 100.
1270 +)))
1271 +
1272 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1273 +
1274 +Format: Command Code (0x0B01) followed by 6 bytes.
1275 +
1276 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1277 +
1278 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1279 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1280 +
1281 += 4. Battery & Power Cons =
1282 +
1283 +
1284 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1285 +
1065 1065  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1066 1066  
1067 1067  
... ... @@ -1069,34 +1069,47 @@
1069 1069  
1070 1070  
1071 1071  (% class="wikigeneratedid" %)
1072 -User can change firmware SN50v3-LB to:
1293 +**User can change firmware SN50v3-LB/LS to:**
1073 1073  
1074 1074  * Change Frequency band/ region.
1075 1075  * Update with new features.
1076 1076  * Fix bugs.
1077 1077  
1078 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1299 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1079 1079  
1301 +**Methods to Update Firmware:**
1080 1080  
1081 -Methods to Update Firmware:
1303 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1304 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1082 1082  
1083 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1084 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085 -
1086 -
1087 1087  = 6. FAQ =
1088 1088  
1089 -== 6.1 Where can i find source code of SN50v3-LB? ==
1308 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1090 1090  
1091 1091  
1092 1092  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1093 1093  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1094 1094  
1314 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1095 1095  
1316 +
1317 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1318 +
1319 +
1320 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1321 +
1322 +
1323 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1324 +
1325 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1326 +
1327 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1328 +
1329 +
1096 1096  = 7. Order Info =
1097 1097  
1098 1098  
1099 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1333 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1100 1100  
1101 1101  (% style="color:red" %)**XX**(%%): The default frequency band
1102 1102  
... ... @@ -1116,13 +1116,12 @@
1116 1116  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1117 1117  * (% style="color:red" %)**NH**(%%): No Hole
1118 1118  
1119 -
1120 1120  = 8. ​Packing Info =
1121 1121  
1122 1122  
1123 1123  (% style="color:#037691" %)**Package Includes**:
1124 1124  
1125 -* SN50v3-LB LoRaWAN Generic Node
1358 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1126 1126  
1127 1127  (% style="color:#037691" %)**Dimension and weight**:
1128 1128  
... ... @@ -1131,7 +1131,6 @@
1131 1131  * Package Size / pcs : cm
1132 1132  * Weight / pcs : g
1133 1133  
1134 -
1135 1135  = 9. Support =
1136 1136  
1137 1137  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0