<
From version < 44.1 >
edited by Ellie Zhang
on 2023/05/17 15:29
To version < 43.45 >
edited by Xiaoling
on 2023/05/16 15:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Ellie
1 +XWiki.Xiaoling
Content
... ... @@ -42,6 +42,7 @@
42 42  * 8500mAh Battery for long term use
43 43  
44 44  
45 +
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -80,6 +80,7 @@
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 82  
84 +
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -108,6 +108,7 @@
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 110  
113 +
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -294,6 +294,7 @@
294 294  1. By default, the device will send an uplink message every 20 minutes.
295 295  
296 296  
300 +
297 297  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
298 298  
299 299  
... ... @@ -300,7 +300,7 @@
300 300  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301 301  
302 302  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
304 304  |**Value**|Bat|(% style="width:191px" %)(((
305 305  Temperature(DS18B20)(PC13)
306 306  )))|(% style="width:78px" %)(((
... ... @@ -323,7 +323,7 @@
323 323  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 324  
325 325  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 327  |**Value**|BAT|(% style="width:196px" %)(((
328 328  Temperature(DS18B20)(PC13)
329 329  )))|(% style="width:87px" %)(((
... ... @@ -332,8 +332,7 @@
332 332  Digital in(PB15) & Digital Interrupt(PA8)
333 333  )))|(% style="width:208px" %)(((
334 334  Distance measure by:1) LIDAR-Lite V3HP
335 -Or
336 -2) Ultrasonic Sensor
339 +Or 2) Ultrasonic Sensor
337 337  )))|(% style="width:117px" %)Reserved
338 338  
339 339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -346,7 +346,7 @@
346 346  
347 347  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348 348  
349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
352 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
350 350  
351 351  [[image:image-20230512173903-6.png||height="596" width="715"]]
352 352  
... ... @@ -372,7 +372,7 @@
372 372  
373 373  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374 374  
375 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
376 376  
377 377  [[image:image-20230512180609-7.png||height="555" width="802"]]
378 378  
... ... @@ -379,7 +379,7 @@
379 379  
380 380  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381 381  
382 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
383 383  
384 384  [[image:image-20230513105207-4.png||height="469" width="802"]]
385 385  
... ... @@ -392,7 +392,7 @@
392 392  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 393  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
394 394  **Size(bytes)**
395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 396  |**Value**|(% style="width:68px" %)(((
397 397  ADC1(PA4)
398 398  )))|(% style="width:75px" %)(((
... ... @@ -443,9 +443,6 @@
443 443  1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 444  1. (((
445 445  Weight has 4 bytes, the unit is g.
446 -
447 -
448 -
449 449  )))
450 450  
451 451  For example:
... ... @@ -461,11 +461,13 @@
461 461  **Size(bytes)**
462 462  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 463  |**Value**|BAT|(% style="width:193px" %)(((
464 -Temperature(DS18B20)(PC13)
464 +Temperature(DS18B20)
465 +(PC13)
465 465  )))|(% style="width:85px" %)(((
466 466  ADC(PA4)
467 467  )))|(% style="width:186px" %)(((
468 -Digital in(PB15) & Digital Interrupt(PA8)
469 +Digital in(PB15) &
470 +Digital Interrupt(PA8)
469 469  )))|(% style="width:100px" %)Weight
470 470  
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -481,11 +481,10 @@
481 481  
482 482  [[image:image-20230512181814-9.png||height="543" width="697"]]
483 483  
484 -
485 485  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
486 486  
487 487  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
488 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 489  |**Value**|BAT|(% style="width:256px" %)(((
490 490  Temperature(DS18B20)(PC13)
491 491  )))|(% style="width:108px" %)(((
... ... @@ -525,7 +525,7 @@
525 525  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 526  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 529  |**Value**|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
... ... @@ -548,19 +548,19 @@
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 549  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 552  |**Value**|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
554 +Temperature1(DS18B20)
555 +(PC13)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
557 +Temperature2(DS18B20)
558 +(PB9)
558 558  )))|(((
559 559  Digital Interrupt
560 560  (PB15)
561 561  )))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
563 +Temperature3(DS18B20)
564 +(PB8)
564 564  )))|(% style="width:78px" %)(((
565 565  Count1(PA8)
566 566  )))|(% style="width:78px" %)(((
... ... @@ -618,7 +618,6 @@
618 618  
619 619  [[image:image-20230512180718-8.png||height="538" width="647"]]
620 620  
621 -
622 622  (% style="color:blue" %)**Example**:
623 623  
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -630,7 +630,6 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
633 -
634 634  The digital input for pin PB15,
635 635  
636 636  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -640,14 +640,11 @@
640 640  (((
641 641  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642 642  
643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 -
645 -
642 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
646 646  )))
647 647  
648 648  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649 649  
650 -
651 651  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
652 652  
653 653  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -654,12 +654,11 @@
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
657 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
653 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
658 658  
659 659  
660 660  ==== 2.3.3.5 Digital Interrupt ====
661 661  
662 -
663 663  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
664 664  
665 665  (% style="color:blue" %)** Interrupt connection method:**
... ... @@ -666,7 +666,6 @@
666 666  
667 667  [[image:image-20230513105351-5.png||height="147" width="485"]]
668 668  
669 -
670 670  (% style="color:blue" %)**Example to use with door sensor :**
671 671  
672 672  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -675,9 +675,8 @@
675 675  
676 676  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
677 677  
672 +(% style="color:blue" %)** Below is the installation example:**
678 678  
679 -(% style="color:blue" %)**Below is the installation example:**
680 -
681 681  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
682 682  
683 683  * (((
... ... @@ -689,7 +689,7 @@
689 689  
690 690  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
691 691  
692 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
685 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
693 693  
694 694  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
695 695  
... ... @@ -707,7 +707,6 @@
707 707  
708 708  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
709 709  
710 -
711 711  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
712 712  
713 713  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -715,7 +715,6 @@
715 715  
716 716  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
717 717  
718 -
719 719  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
720 720  
721 721  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
... ... @@ -744,13 +744,11 @@
744 744  
745 745  ==== 2.3.3.7  ​Distance Reading ====
746 746  
747 -
748 748  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
749 749  
750 750  
751 751  ==== 2.3.3.8 Ultrasonic Sensor ====
752 752  
753 -
754 754  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755 755  
756 756  The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
... ... @@ -761,7 +761,6 @@
761 761  
762 762  [[image:image-20230512173903-6.png||height="596" width="715"]]
763 763  
764 -
765 765  Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 766  
767 767  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
... ... @@ -771,15 +771,14 @@
771 771  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
772 772  
773 773  
762 +
774 774  ==== 2.3.3.9  Battery Output - BAT pin ====
775 775  
776 -
777 777  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
778 778  
779 779  
780 780  ==== 2.3.3.10  +5V Output ====
781 781  
782 -
783 783  SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
784 784  
785 785  The 5V output time can be controlled by AT Command.
... ... @@ -791,20 +791,18 @@
791 791  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
792 792  
793 793  
781 +
794 794  ==== 2.3.3.11  BH1750 Illumination Sensor ====
795 795  
796 -
797 797  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
798 798  
799 799  [[image:image-20230512172447-4.png||height="416" width="712"]]
800 800  
801 -
802 802  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803 803  
804 804  
805 805  ==== 2.3.3.12  Working MOD ====
806 806  
807 -
808 808  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809 809  
810 810  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -832,6 +832,7 @@
832 832  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
833 833  
834 834  
820 +
835 835  == 2.5 Frequency Plans ==
836 836  
837 837  
... ... @@ -851,7 +851,6 @@
851 851  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
852 852  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
853 853  
854 -
855 855  == 3.2 General Commands ==
856 856  
857 857  
... ... @@ -873,7 +873,6 @@
873 873  
874 874  === 3.3.1 Set Transmit Interval Time ===
875 875  
876 -
877 877  Feature: Change LoRaWAN End Node Transmit Interval.
878 878  
879 879  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -902,7 +902,6 @@
902 902  
903 903  === 3.3.2 Get Device Status ===
904 904  
905 -
906 906  Send a LoRaWAN downlink to ask the device to send its status.
907 907  
908 908  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -912,7 +912,6 @@
912 912  
913 913  === 3.3.3 Set Interrupt Mode ===
914 914  
915 -
916 916  Feature, Set Interrupt mode for GPIO_EXIT.
917 917  
918 918  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -933,6 +933,7 @@
933 933  )))|(% style="width:157px" %)OK
934 934  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
935 935  Set Transmit Interval
918 +
936 936  trigger by rising edge.
937 937  )))|(% style="width:157px" %)OK
938 938  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -951,7 +951,6 @@
951 951  
952 952  === 3.3.4 Set Power Output Duration ===
953 953  
954 -
955 955  Control the output duration 5V . Before each sampling, device will
956 956  
957 957  ~1. first enable the power output to external sensor,
... ... @@ -984,7 +984,6 @@
984 984  
985 985  === 3.3.5 Set Weighing parameters ===
986 986  
987 -
988 988  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
989 989  
990 990  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1010,7 +1010,6 @@
1010 1010  
1011 1011  === 3.3.6 Set Digital pulse count value ===
1012 1012  
1013 -
1014 1014  Feature: Set the pulse count value.
1015 1015  
1016 1016  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1034,7 +1034,6 @@
1034 1034  
1035 1035  === 3.3.7 Set Workmode ===
1036 1036  
1037 -
1038 1038  Feature: Switch working mode.
1039 1039  
1040 1040  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1083,16 +1083,13 @@
1083 1083  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1084 1084  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085 1085  
1086 -
1087 1087  = 6. FAQ =
1088 1088  
1089 1089  == 6.1 Where can i find source code of SN50v3-LB? ==
1090 1090  
1091 -
1092 1092  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1093 1093  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1094 1094  
1095 -
1096 1096  = 7. Order Info =
1097 1097  
1098 1098  
... ... @@ -1116,10 +1116,8 @@
1116 1116  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1117 1117  * (% style="color:red" %)**NH**(%%): No Hole
1118 1118  
1119 -
1120 1120  = 8. ​Packing Info =
1121 1121  
1122 -
1123 1123  (% style="color:#037691" %)**Package Includes**:
1124 1124  
1125 1125  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1131,7 +1131,6 @@
1131 1131  * Package Size / pcs : cm
1132 1132  * Weight / pcs : g
1133 1133  
1134 -
1135 1135  = 9. Support =
1136 1136  
1137 1137  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0