Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230513111203-7.png", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Ellie1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,10 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 - 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,10 +79,8 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 - 86 86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 87 87 88 88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -107,7 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -126,7 +126,7 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-2023051 3102034-2.png]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 130 130 131 131 132 132 == 1.8 Mechanical == ... ... @@ -141,7 +141,6 @@ 141 141 142 142 == Hole Option == 143 143 144 - 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 146 146 147 147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -293,148 +293,130 @@ 293 293 1. All modes share the same Payload Explanation from HERE. 294 294 1. By default, the device will send an uplink message every 20 minutes. 295 295 296 - 297 297 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 298 298 299 - 300 300 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 301 301 302 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 304 -|**Value**|Bat|(% style="width:191px" %)((( 305 -Temperature(DS18B20)(PC13) 306 -)))|(% style="width:78px" %)((( 307 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 308 308 )))|(% style="width:216px" %)((( 309 -Digital in(PB15)&Digital Interrupt(PA8) 310 -)))|(% style="width:308px" %)((( 311 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 312 -)))|(% style="width:154px" %)((( 313 -Humidity(SHT20 or SHT31) 314 -))) 305 +Digital in & Digital Interrupt 315 315 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 316 316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 317 317 318 318 319 - 320 320 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 321 321 322 - 323 323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 324 324 325 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 327 -|**Value**|BAT|(% style="width:196px" %)((( 328 -Temperature(DS18B20)(PC13) 329 -)))|(% style="width:87px" %)((( 330 -ADC(PA4) 331 -)))|(% style="width:189px" %)((( 332 -Digital in(PB15) & Digital Interrupt(PA8) 333 -)))|(% style="width:208px" %)((( 334 -Distance measure by:1) LIDAR-Lite V3HP 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 335 335 Or 336 336 2) Ultrasonic Sensor 337 -)))| (% style="width:117px" %)Reserved325 +)))|Reserved 338 338 339 339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 340 340 329 +**Connection of LIDAR-Lite V3HP:** 341 341 342 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 343 - 344 344 [[image:image-20230512173758-5.png||height="563" width="712"]] 345 345 333 +**Connection to Ultrasonic Sensor:** 346 346 347 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 348 - 349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 350 - 351 351 [[image:image-20230512173903-6.png||height="596" width="715"]] 352 352 353 - 354 354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 355 355 356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 358 -|**Value**|BAT|(% style="width:183px" %)((( 359 -Temperature(DS18B20)(PC13) 360 -)))|(% style="width:173px" %)((( 361 -Digital in(PB15) & Digital Interrupt(PA8) 362 -)))|(% style="width:84px" %)((( 363 -ADC(PA4) 364 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 365 365 Distance measure by:1)TF-Mini plus LiDAR 366 366 Or 367 367 2) TF-Luna LiDAR 368 -)))| (% style="width:188px" %)Distance signal strength346 +)))|Distance signal strength 369 369 370 370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 371 371 372 - 373 373 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 374 374 375 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 376 376 377 377 [[image:image-20230512180609-7.png||height="555" width="802"]] 378 378 379 - 380 380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 381 381 382 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 383 383 384 -[[image:i mage-20230513105207-4.png||height="469" width="802"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 385 385 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 386 386 364 + 387 387 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 388 388 389 - 390 390 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 391 391 392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 393 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 394 394 **Size(bytes)** 395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 396 396 |**Value**|(% style="width:68px" %)((( 397 -ADC1(PA4) 373 +ADC 374 + 375 +(PA0) 398 398 )))|(% style="width:75px" %)((( 399 -ADC2(PA5) 400 -)))|((( 401 -ADC3(PA8) 402 -)))|((( 403 -Digital Interrupt(PB15) 404 -)))|(% style="width:304px" %)((( 405 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 406 -)))|(% style="width:163px" %)((( 407 -Humidity(SHT20 or SHT31) 408 -)))|(% style="width:53px" %)Bat 377 +ADC2 409 409 410 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 411 411 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 412 412 386 + 413 413 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 414 414 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 415 415 416 416 This mode has total 11 bytes. As shown below: 417 417 418 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)419 -| (% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 420 420 |**Value**|BAT|(% style="width:186px" %)((( 421 -Temperature1(DS18B20)(PC13) 396 +Temperature1(DS18B20) 397 +(PC13) 422 422 )))|(% style="width:82px" %)((( 423 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 424 424 )))|(% style="width:210px" %)((( 425 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 426 426 )))|(% style="width:191px" %)Temperature2(DS18B20) 427 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 428 428 429 429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 430 430 431 -[[image:image-20230513134006-1.png||height="559" width="736"]] 432 432 433 - 434 - 435 435 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 436 436 437 - 438 438 [[image:image-20230512164658-2.png||height="532" width="729"]] 439 439 440 440 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -443,9 +443,6 @@ 443 443 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 444 444 1. ((( 445 445 Weight has 4 bytes, the unit is g. 446 - 447 - 448 - 449 449 ))) 450 450 451 451 For example: ... ... @@ -456,25 +456,31 @@ 456 456 457 457 Check the response of this command and adjust the value to match the real value for thing. 458 458 459 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)460 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 461 461 **Size(bytes)** 462 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 463 -|**Value**|BAT|(% style="width:193px" %)((( 464 -Temperature(DS18B20)(PC13) 465 -)))|(% style="width:85px" %)((( 466 -ADC(PA4) 467 -)))|(% style="width:186px" %)((( 468 -Digital in(PB15) & Digital Interrupt(PA8) 469 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 470 470 471 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]440 +(PC13) 472 472 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 473 473 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 474 474 475 -==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 476 476 453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 477 477 455 + 456 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 457 + 478 478 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 479 479 480 480 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -481,113 +481,86 @@ 481 481 482 482 [[image:image-20230512181814-9.png||height="543" width="697"]] 483 483 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 484 484 485 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 486 486 487 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 488 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 489 -|**Value**|BAT|(% style="width:256px" %)((( 490 -Temperature(DS18B20)(PC13) 491 -)))|(% style="width:108px" %)((( 492 -ADC(PA4) 493 -)))|(% style="width:126px" %)((( 494 -Digital in(PB15) 495 -)))|(% style="width:145px" %)((( 496 -Count(PA8) 497 -))) 498 - 499 499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 500 500 501 501 502 - 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 505 505 506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 508 508 **Size(bytes)** 509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 -|**Value**|BAT|(% style="width:188px" %)((( 511 -Temperature(DS18B20) 512 -(PC13) 513 -)))|(% style="width:83px" %)((( 514 -ADC(PA5) 515 -)))|(% style="width:184px" %)((( 516 -Digital Interrupt1(PA8) 517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 518 518 519 -[[image:image-20230513111203-7.png||height="324" width="975"]] 520 - 521 - 522 522 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 523 523 524 - 525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 527 527 **Size(bytes)** 528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 -|**Value**|BAT|(% style="width:207px" %)((( 530 -Temperature(DS18B20) 531 -(PC13) 532 -)))|(% style="width:94px" %)((( 533 -ADC1(PA4) 534 -)))|(% style="width:198px" %)((( 535 -Digital Interrupt(PB15) 536 -)))|(% style="width:84px" %)((( 537 -ADC2(PA5) 538 -)))|(% style="width:82px" %)((( 539 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 540 540 ))) 541 541 542 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 543 543 544 544 545 545 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 546 546 547 - 548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 550 550 **Size(bytes)** 551 -)))|= (% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 552 552 |**Value**|BAT|((( 553 -Temperature 554 -(DS18B20)(PC13) 510 +Temperature1(PB3) 555 555 )))|((( 556 -Temperature2 557 -(DS18B20)(PB9) 512 +Temperature2(PA9) 558 558 )))|((( 559 -Digital Interrupt 560 -(PB15) 561 -)))|(% style="width:193px" %)((( 562 -Temperature3 563 -(DS18B20)(PB8) 564 -)))|(% style="width:78px" %)((( 565 -Count1(PA8) 566 -)))|(% style="width:78px" %)((( 567 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 568 568 ))) 569 569 570 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 571 571 572 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 573 573 574 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 575 575 576 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 577 577 578 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 579 579 534 +**AT+SETCNT=aa,bb** 580 580 581 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 582 582 583 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 588 588 === 2.3.3 Decode payload === 589 589 590 - 591 591 While using TTN V3 network, you can add the payload format to decode the payload. 592 592 593 593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -599,7 +599,6 @@ 599 599 600 600 ==== 2.3.3.1 Battery Info ==== 601 601 602 - 603 603 Check the battery voltage for SN50v3. 604 604 605 605 Ex1: 0x0B45 = 2885mV ... ... @@ -609,18 +609,16 @@ 609 609 610 610 ==== 2.3.3.2 Temperature (DS18B20) ==== 611 611 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 612 612 613 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 614 614 615 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 616 616 617 -(% style="color:blue" %)**Connection:** 618 - 619 619 [[image:image-20230512180718-8.png||height="538" width="647"]] 620 620 572 +**Example**: 621 621 622 -(% style="color:blue" %)**Example**: 623 - 624 624 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 625 625 626 626 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -630,7 +630,6 @@ 630 630 631 631 ==== 2.3.3.3 Digital Input ==== 632 632 633 - 634 634 The digital input for pin PB15, 635 635 636 636 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -638,60 +638,51 @@ 638 638 639 639 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 640 640 ((( 641 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 642 - 643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 - 645 - 590 +Note:The maximum voltage input supports 3.6V. 646 646 ))) 647 647 593 +(% class="wikigeneratedid" %) 648 648 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 649 649 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 650 650 651 - The measuringrange of theADCis onlyabout0Vto1.1VThe voltage resolution is about0.24mv.598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 652 652 653 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 654 - 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 656 656 657 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 658 658 659 - 660 660 ==== 2.3.3.5 Digital Interrupt ==== 661 661 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 662 662 663 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3 will send a packet tothe server.607 +**~ Interrupt connection method:** 664 664 665 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 666 666 667 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 668 668 669 - 670 -(% style="color:blue" %)**Example to use with door sensor :** 671 - 672 672 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 675 675 676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3interrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 677 677 619 +**~ Below is the installation example:** 678 678 679 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 680 680 681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 682 - 683 683 * ((( 684 -One pin to SN50 _v3's PA8pin624 +One pin to LSN50's PB14 pin 685 685 ))) 686 686 * ((( 687 -The other pin to SN50 _v3's VDDpin627 +The other pin to LSN50's VCC pin 688 688 ))) 689 689 690 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 691 691 692 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 693 694 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 695 695 696 696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 697 697 ... ... @@ -701,13 +701,12 @@ 701 701 702 702 The command is: 703 703 704 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 705 705 706 706 Below shows some screen captures in TTN V3: 707 707 708 708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 709 709 710 - 711 711 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 712 712 713 713 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -715,18 +715,16 @@ 715 715 716 716 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 717 717 718 - 719 719 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 720 720 721 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 722 722 723 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 /SHT31code in SN50_v3 will be a good reference.661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 724 724 725 725 Below is the connection to SHT20/ SHT31. The connection is as below: 726 726 665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 727 727 728 -[[image:image-20230513103633-3.png||height="448" width="716"]] 729 - 730 730 The device will be able to get the I2C sensor data now and upload to IoT Server. 731 731 732 732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -744,26 +744,20 @@ 744 744 745 745 ==== 2.3.3.7 Distance Reading ==== 746 746 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 747 747 748 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 749 749 750 - 751 751 ==== 2.3.3.8 Ultrasonic Sensor ==== 752 752 753 - 754 754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 755 755 756 -The SN50 _v3detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 757 757 758 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 759 - 760 760 The picture below shows the connection: 761 761 762 -[[image:image-20230512173903-6.png||height="596" width="715"]] 763 763 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 764 764 765 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 - 767 767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 768 768 769 769 **Example:** ... ... @@ -770,21 +770,32 @@ 770 770 771 771 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 772 772 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 773 773 774 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 775 775 708 +You can see the serial output in ULT mode as below: 776 776 710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 711 + 712 +**In TTN V3 server:** 713 + 714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 715 + 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 717 + 718 +==== 2.3.3.9 Battery Output - BAT pin ==== 719 + 777 777 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 778 778 779 779 780 780 ==== 2.3.3.10 +5V Output ==== 781 781 782 - 783 783 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 784 784 785 785 The 5V output time can be controlled by AT Command. 786 786 787 - (% style="color:blue" %)**AT+5VT=1000**729 +**AT+5VT=1000** 788 788 789 789 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 790 790 ... ... @@ -791,20 +791,18 @@ 791 791 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 792 792 793 793 736 + 794 794 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 795 795 796 - 797 797 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 798 798 799 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 800 800 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 801 801 802 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 803 803 804 - 805 805 ==== 2.3.3.12 Working MOD ==== 806 806 807 - 808 808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 809 809 810 810 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -817,11 +817,7 @@ 817 817 * 3: MOD4 818 818 * 4: MOD5 819 819 * 5: MOD6 820 -* 6: MOD7 821 -* 7: MOD8 822 -* 8: MOD9 823 823 824 - 825 825 == 2.4 Payload Decoder file == 826 826 827 827 ... ... @@ -829,9 +829,10 @@ 829 829 830 830 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 831 831 832 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 833 833 834 834 771 + 835 835 == 2.5 Frequency Plans == 836 836 837 837 ... ... @@ -851,7 +851,6 @@ 851 851 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 852 852 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 853 853 854 - 855 855 == 3.2 General Commands == 856 856 857 857 ... ... @@ -899,32 +899,30 @@ 899 899 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 900 900 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 901 901 902 - 903 903 === 3.3.2 Get Device Status === 904 904 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 905 905 906 -Send a LoRaWAN downlink to ask the device to send its status. 907 - 908 908 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 909 909 910 910 Sensor will upload Device Status via FPORT=5. See payload section for detail. 911 911 912 912 913 -=== 3.3. 3Set Interrupt Mode ===847 +=== 3.3.7 Set Interrupt Mode === 914 914 915 915 916 916 Feature, Set Interrupt mode for GPIO_EXIT. 917 917 918 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 919 919 920 920 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 921 921 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 922 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 923 923 0 924 924 OK 925 925 the mode is 0 =Disable Interrupt 926 926 ))) 927 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 928 928 Set Transmit Interval 929 929 0. (Disable Interrupt), 930 930 ~1. (Trigger by rising and falling edge) ... ... @@ -931,11 +931,6 @@ 931 931 2. (Trigger by falling edge) 932 932 3. (Trigger by rising edge) 933 933 )))|(% style="width:157px" %)OK 934 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 935 -Set Transmit Interval 936 -trigger by rising edge. 937 -)))|(% style="width:157px" %)OK 938 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 939 939 940 940 (% style="color:blue" %)**Downlink Command: 0x06** 941 941 ... ... @@ -943,120 +943,9 @@ 943 943 944 944 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 945 945 946 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 947 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 948 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 949 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 950 950 951 - 952 -=== 3.3.4 Set Power Output Duration === 953 - 954 - 955 -Control the output duration 5V . Before each sampling, device will 956 - 957 -~1. first enable the power output to external sensor, 958 - 959 -2. keep it on as per duration, read sensor value and construct uplink payload 960 - 961 -3. final, close the power output. 962 - 963 -(% style="color:blue" %)**AT Command: AT+5VT** 964 - 965 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 966 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 967 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 968 -500(default) 969 -OK 970 -))) 971 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 972 -Close after a delay of 1000 milliseconds. 973 -)))|(% style="width:157px" %)OK 974 - 975 -(% style="color:blue" %)**Downlink Command: 0x07** 976 - 977 -Format: Command Code (0x07) followed by 2 bytes. 978 - 979 -The first and second bytes are the time to turn on. 980 - 981 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 982 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 983 - 984 - 985 -=== 3.3.5 Set Weighing parameters === 986 - 987 - 988 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 989 - 990 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 991 - 992 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 993 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 994 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 995 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 996 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 997 - 998 -(% style="color:blue" %)**Downlink Command: 0x08** 999 - 1000 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1001 - 1002 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1003 - 1004 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1005 - 1006 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1007 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1008 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1009 - 1010 - 1011 -=== 3.3.6 Set Digital pulse count value === 1012 - 1013 - 1014 -Feature: Set the pulse count value. 1015 - 1016 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1017 - 1018 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1019 - 1020 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1021 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1022 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1023 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1024 - 1025 -(% style="color:blue" %)**Downlink Command: 0x09** 1026 - 1027 -Format: Command Code (0x09) followed by 5 bytes. 1028 - 1029 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1030 - 1031 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1032 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1033 - 1034 - 1035 -=== 3.3.7 Set Workmode === 1036 - 1037 - 1038 -Feature: Switch working mode. 1039 - 1040 -(% style="color:blue" %)**AT Command: AT+MOD** 1041 - 1042 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1043 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1044 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1045 -OK 1046 -))) 1047 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1048 -OK 1049 -Attention:Take effect after ATZ 1050 -))) 1051 - 1052 -(% style="color:blue" %)**Downlink Command: 0x0A** 1053 - 1054 -Format: Command Code (0x0A) followed by 1 bytes. 1055 - 1056 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1057 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1058 - 1059 - 1060 1060 = 4. Battery & Power Consumption = 1061 1061 1062 1062 ... ... @@ -1083,12 +1083,10 @@ 1083 1083 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1084 1084 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1085 1085 1086 - 1087 1087 = 6. FAQ = 1088 1088 1089 1089 == 6.1 Where can i find source code of SN50v3-LB? == 1090 1090 1091 - 1092 1092 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1093 1093 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1094 1094 ... ... @@ -1116,10 +1116,8 @@ 1116 1116 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1117 1117 * (% style="color:red" %)**NH**(%%): No Hole 1118 1118 1119 - 1120 1120 = 8. Packing Info = 1121 1121 1122 - 1123 1123 (% style="color:#037691" %)**Package Includes**: 1124 1124 1125 1125 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1131,10 +1131,8 @@ 1131 1131 * Package Size / pcs : cm 1132 1132 * Weight / pcs : g 1133 1133 1134 - 1135 1135 = 9. Support = 1136 1136 1137 1137 1138 1138 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1139 - 1140 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content