<
From version < 44.1 >
edited by Ellie Zhang
on 2023/05/17 15:29
To version < 11.1 >
edited by Edwin Chen
on 2023/05/11 20:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Ellie
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,10 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 -
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,10 +79,8 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 -
86 86  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87 87  
88 88  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,7 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -141,7 +141,6 @@
141 141  
142 142  == Hole Option ==
143 143  
144 -
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 146  
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,11 +165,11 @@
165 165  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
169 169  
170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
171 171  
172 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
173 173  
174 174  
175 175  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -196,10 +196,10 @@
196 196  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197 197  
198 198  
199 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
200 200  
201 201  
202 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
203 203  
204 204  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205 205  
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -223,9 +223,11 @@
223 223  
224 224  Example parse in TTNv3
225 225  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -277,350 +277,41 @@
277 277  Ex2: 0x0B49 = 2889mV
278 278  
279 279  
280 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
281 281  
282 282  
283 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +Sensor Data is uplink via FPORT=2
284 284  
285 -For example:
286 -
287 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 -
289 -
290 -(% style="color:red" %) **Important Notice:**
291 -
292 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 -1. All modes share the same Payload Explanation from HERE.
294 -1. By default, the device will send an uplink message every 20 minutes.
295 -
296 -
297 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
298 -
299 -
300 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301 -
302 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
304 -|**Value**|Bat|(% style="width:191px" %)(((
305 -Temperature(DS18B20)(PC13)
306 -)))|(% style="width:78px" %)(((
307 -ADC(PA4)
308 -)))|(% style="width:216px" %)(((
309 -Digital in(PB15)&Digital Interrupt(PA8)
310 -)))|(% style="width:308px" %)(((
311 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
312 -)))|(% style="width:154px" %)(((
313 -Humidity(SHT20 or SHT31)
314 -)))
315 -
316 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317 -
318 -
319 -
320 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321 -
322 -
323 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 -
325 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 -|**Value**|BAT|(% style="width:196px" %)(((
328 -Temperature(DS18B20)(PC13)
329 -)))|(% style="width:87px" %)(((
330 -ADC(PA4)
331 -)))|(% style="width:189px" %)(((
332 -Digital in(PB15) & Digital Interrupt(PA8)
333 -)))|(% style="width:208px" %)(((
334 -Distance measure by:1) LIDAR-Lite V3HP
335 -Or
336 -2) Ultrasonic Sensor
337 -)))|(% style="width:117px" %)Reserved
338 -
339 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340 -
341 -
342 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343 -
344 -[[image:image-20230512173758-5.png||height="563" width="712"]]
345 -
346 -
347 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348 -
349 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
350 -
351 -[[image:image-20230512173903-6.png||height="596" width="715"]]
352 -
353 -
354 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355 -
356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 -|**Value**|BAT|(% style="width:183px" %)(((
359 -Temperature(DS18B20)(PC13)
360 -)))|(% style="width:173px" %)(((
361 -Digital in(PB15) & Digital Interrupt(PA8)
362 -)))|(% style="width:84px" %)(((
363 -ADC(PA4)
364 -)))|(% style="width:323px" %)(((
365 -Distance measure by:1)TF-Mini plus LiDAR
366 -Or 
367 -2) TF-Luna LiDAR
368 -)))|(% style="width:188px" %)Distance signal  strength
369 -
370 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
371 -
372 -
373 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374 -
375 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
376 -
377 -[[image:image-20230512180609-7.png||height="555" width="802"]]
378 -
379 -
380 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381 -
382 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383 -
384 -[[image:image-20230513105207-4.png||height="469" width="802"]]
385 -
386 -
387 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388 -
389 -
390 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391 -
392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
394 394  **Size(bytes)**
395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 -|**Value**|(% style="width:68px" %)(((
397 -ADC1(PA4)
398 -)))|(% style="width:75px" %)(((
399 -ADC2(PA5)
400 -)))|(((
401 -ADC3(PA8)
402 -)))|(((
403 -Digital Interrupt(PB15)
404 -)))|(% style="width:304px" %)(((
405 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
406 -)))|(% style="width:163px" %)(((
407 -Humidity(SHT20 or SHT31)
408 -)))|(% style="width:53px" %)Bat
409 -
410 -[[image:image-20230513110214-6.png]]
411 -
412 -
413 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
414 -
415 -
416 -This mode has total 11 bytes. As shown below:
417 -
418 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 -|**Value**|BAT|(% style="width:186px" %)(((
421 -Temperature1(DS18B20)(PC13)
422 -)))|(% style="width:82px" %)(((
423 -ADC(PA4)
424 -)))|(% style="width:210px" %)(((
425 -Digital in(PB15) & Digital Interrupt(PA8) 
426 -)))|(% style="width:191px" %)Temperature2(DS18B20)
427 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
428 -
429 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430 -
431 -[[image:image-20230513134006-1.png||height="559" width="736"]]
432 -
433 -
434 -
435 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436 -
437 -
438 -[[image:image-20230512164658-2.png||height="532" width="729"]]
439 -
440 -Each HX711 need to be calibrated before used. User need to do below two steps:
441 -
442 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
443 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 -1. (((
445 -Weight has 4 bytes, the unit is g.
446 -
447 -
448 -
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
449 449  )))
450 450  
451 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
452 452  
453 -**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
454 454  
455 -Response:  Weight is 401 g
456 -
457 -Check the response of this command and adjust the value to match the real value for thing.
458 -
459 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
461 -**Size(bytes)**
462 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 -|**Value**|BAT|(% style="width:193px" %)(((
464 -Temperature(DS18B20)(PC13)
465 -)))|(% style="width:85px" %)(((
466 -ADC(PA4)
467 -)))|(% style="width:186px" %)(((
468 -Digital in(PB15) & Digital Interrupt(PA8)
469 -)))|(% style="width:100px" %)Weight
470 -
471 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472 -
473 -
474 -
475 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
476 -
477 -
478 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
479 -
480 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
481 -
482 -[[image:image-20230512181814-9.png||height="543" width="697"]]
483 -
484 -
485 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
486 -
487 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
488 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 -|**Value**|BAT|(% style="width:256px" %)(((
490 -Temperature(DS18B20)(PC13)
491 -)))|(% style="width:108px" %)(((
492 -ADC(PA4)
493 -)))|(% style="width:126px" %)(((
494 -Digital in(PB15)
495 -)))|(% style="width:145px" %)(((
496 -Count(PA8)
497 -)))
498 -
499 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
500 -
501 -
502 -
503 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 -
505 -
506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 -**Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 -|**Value**|BAT|(% style="width:188px" %)(((
511 -Temperature(DS18B20)
512 -(PC13)
513 -)))|(% style="width:83px" %)(((
514 -ADC(PA5)
515 -)))|(% style="width:184px" %)(((
516 -Digital Interrupt1(PA8)
517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
518 -
519 -[[image:image-20230513111203-7.png||height="324" width="975"]]
520 -
521 -
522 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 -
524 -
525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 -**Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 -|**Value**|BAT|(% style="width:207px" %)(((
530 -Temperature(DS18B20)
531 -(PC13)
532 -)))|(% style="width:94px" %)(((
533 -ADC1(PA4)
534 -)))|(% style="width:198px" %)(((
535 -Digital Interrupt(PB15)
536 -)))|(% style="width:84px" %)(((
537 -ADC2(PA5)
538 -)))|(% style="width:82px" %)(((
539 -ADC3(PA8)
540 -)))
541 -
542 -[[image:image-20230513111231-8.png||height="335" width="900"]]
543 -
544 -
545 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 -
547 -
548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 -**Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 -|**Value**|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
555 -)))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
558 -)))|(((
559 -Digital Interrupt
560 -(PB15)
561 -)))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
564 -)))|(% style="width:78px" %)(((
565 -Count1(PA8)
566 -)))|(% style="width:78px" %)(((
567 -Count2(PA4)
568 -)))
569 -
570 -[[image:image-20230513111255-9.png||height="341" width="899"]]
571 -
572 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
573 -
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
575 -
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
577 -
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
579 -
580 -
581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
582 -
583 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
584 -
585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 -
587 -
588 -=== 2.3.3  ​Decode payload ===
589 -
590 -
591 -While using TTN V3 network, you can add the payload format to decode the payload.
592 -
593 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
594 -
595 -The payload decoder function for TTN V3 are here:
596 -
597 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 -
599 -
600 -==== 2.3.3.1 Battery Info ====
601 -
602 -
603 -Check the battery voltage for SN50v3.
604 -
605 605  Ex1: 0x0B45 = 2885mV
606 606  
607 607  Ex2: 0x0B49 = 2889mV
608 608  
609 609  
610 -==== 2.3.3.2  Temperature (DS18B20) ====
611 611  
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
612 612  
613 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 +**Example**:
614 614  
615 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
616 -
617 -(% style="color:blue" %)**Connection:**
618 -
619 -[[image:image-20230512180718-8.png||height="538" width="647"]]
620 -
621 -
622 -(% style="color:blue" %)**Example**:
623 -
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625 625  
626 626  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -628,230 +628,200 @@
628 628  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
629 629  
630 630  
631 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
632 632  
633 633  
634 -The digital input for pin PB15,
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
635 635  
636 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
637 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
638 638  
639 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 -(((
641 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
642 642  
643 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 644  
645 -
646 -)))
328 +**Example:**
647 647  
648 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
649 649  
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
650 650  
651 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
652 652  
653 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
654 654  
655 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656 656  
657 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
339 +== 2.4 Payload Decoder file ==
658 658  
659 659  
660 -==== 2.3.3.5 Digital Interrupt ====
342 +In TTN, use can add a custom payload so it shows friendly reading
661 661  
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
662 662  
663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
664 664  
665 -(% style="color:blue" %)** Interrupt connection method:**
666 666  
667 -[[image:image-20230513105351-5.png||height="147" width="485"]]
349 +== 2.5 Datalog Feature ==
668 668  
669 669  
670 -(% style="color:blue" %)**Example to use with door sensor :**
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
671 671  
672 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
673 673  
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
675 675  
676 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
677 677  
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
678 678  
679 -(% style="color:blue" %)**Below is the installation example:**
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
680 680  
681 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
682 682  
683 -* (((
684 -One pin to SN50_v3's PA8 pin
685 -)))
686 -* (((
687 -The other pin to SN50_v3's VDD pin
688 -)))
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
689 689  
690 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
367 +=== 2.5.2 Unix TimeStamp ===
691 691  
692 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
693 693  
694 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
370 +S31x-LB uses Unix TimeStamp format based on
695 695  
696 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
697 697  
698 -The above photos shows the two parts of the magnetic switch fitted to a door.
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
699 699  
700 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
376 +Below is the converter example
701 701  
702 -The command is:
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
703 703  
704 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
705 705  
706 -Below shows some screen captures in TTN V3:
707 707  
708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
383 +=== 2.5.3 Set Device Time ===
709 709  
710 710  
711 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
712 712  
713 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
714 714  
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
715 715  
716 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
717 717  
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
718 718  
719 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
720 720  
721 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
396 +The Datalog uplinks will use below payload format.
722 722  
723 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
398 +**Retrieval data payload:**
724 724  
725 -Below is the connection to SHT20/ SHT31. The connection is as below:
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
726 726  
408 +**Poll message flag & Ext:**
727 727  
728 -[[image:image-20230513103633-3.png||height="448" width="716"]]
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
729 729  
730 -The device will be able to get the I2C sensor data now and upload to IoT Server.
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
731 731  
732 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
414 +**Poll Message Flag**: 1: This message is a poll message reply.
733 733  
734 -Convert the read byte to decimal and divide it by ten.
416 +* Poll Message Flag is set to 1.
735 735  
736 -**Example:**
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
737 737  
738 -Temperature Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
420 +For example, in US915 band, the max payload for different DR is:
739 739  
740 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
422 +**a) DR0:** max is 11 bytes so one entry of data
741 741  
742 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
743 743  
426 +**c) DR2:** total payload includes 11 entries of data
744 744  
745 -==== 2.3.3.7  ​Distance Reading ====
428 +**d) DR3: **total payload includes 22 entries of data.
746 746  
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
747 747  
748 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
749 749  
750 -
751 -==== 2.3.3.8 Ultrasonic Sensor ====
752 -
753 -
754 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755 -
756 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
757 -
758 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
759 -
760 -The picture below shows the connection:
761 -
762 -[[image:image-20230512173903-6.png||height="596" width="715"]]
763 -
764 -
765 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 -
767 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
768 -
769 769  **Example:**
770 770  
771 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
772 772  
437 +[[image:1682646494051-944.png]]
773 773  
774 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +If user sends below downlink command: 3160065F9760066DA705
775 775  
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
776 776  
777 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
778 778  
779 779  
780 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
781 781  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
782 782  
783 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
784 784  
785 -The 5V output time can be controlled by AT Command.
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
786 786  
787 -(% style="color:blue" %)**AT+5VT=1000**
458 +(((
459 +7FFF089801464160065F97
460 +)))
788 788  
789 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
790 790  
791 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
792 792  
470 +(((
471 +**Hum**=0x014B/10=32.6
472 +)))
793 793  
794 -==== 2.3.3.11  BH1750 Illumination Sensor ====
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
476 +)))
795 795  
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
480 +)))
796 796  
797 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
798 798  
799 -[[image:image-20230512172447-4.png||height="416" width="712"]]
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
800 800  
485 +== 2.6 Temperature Alarm Feature ==
801 801  
802 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803 803  
488 +S31x-LB work flow with Alarm feature.
804 804  
805 -==== 2.3.3.12  Working MOD ====
806 806  
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
807 807  
808 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809 809  
810 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
494 +== 2.7 Frequency Plans ==
811 811  
812 -Case 7^^th^^ Byte >> 2 & 0x1f:
813 813  
814 -* 0: MOD1
815 -* 1: MOD2
816 -* 2: MOD3
817 -* 3: MOD4
818 -* 4: MOD5
819 -* 5: MOD6
820 -* 6: MOD7
821 -* 7: MOD8
822 -* 8: MOD9
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
823 823  
824 -
825 -== 2.4 Payload Decoder file ==
826 -
827 -
828 -In TTN, use can add a custom payload so it shows friendly reading
829 -
830 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
831 -
832 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
833 -
834 -
835 -== 2.5 Frequency Plans ==
836 -
837 -
838 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
839 -
840 840  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
841 841  
842 842  
843 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
844 844  
845 845  == 3.1 Configure Methods ==
846 846  
847 847  
848 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
849 849  
850 850  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
851 851  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
852 852  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
853 853  
854 -
855 855  == 3.2 General Commands ==
856 856  
857 857  
... ... @@ -865,7 +865,7 @@
865 865  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
866 866  
867 867  
868 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
869 869  
870 870  
871 871  These commands only valid for S31x-LB, as below:
... ... @@ -899,11 +899,10 @@
899 899  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
900 900  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
901 901  
902 -
903 903  === 3.3.2 Get Device Status ===
904 904  
905 905  
906 -Send a LoRaWAN downlink to ask the device to send its status.
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
907 907  
908 908  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
909 909  
... ... @@ -910,152 +910,107 @@
910 910  Sensor will upload Device Status via FPORT=5. See payload section for detail.
911 911  
912 912  
913 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
914 914  
572 +* (% style="color:blue" %)**AT Command:**
915 915  
916 -Feature, Set Interrupt mode for GPIO_EXIT.
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
917 917  
918 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
919 919  
920 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
922 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
923 -0
924 -OK
925 -the mode is 0 =Disable Interrupt
926 -)))
927 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
928 -Set Transmit Interval
929 -0. (Disable Interrupt),
930 -~1. (Trigger by rising and falling edge)
931 -2. (Trigger by falling edge)
932 -3. (Trigger by rising edge)
933 -)))|(% style="width:157px" %)OK
934 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
935 -Set Transmit Interval
936 -trigger by rising edge.
937 -)))|(% style="width:157px" %)OK
938 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
580 +Example:
939 939  
940 -(% style="color:blue" %)**Downlink Command: 0x06**
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
941 941  
942 -Format: Command Code (0x06) followed by 3 bytes.
584 +* (% style="color:blue" %)**Downlink Payload:**
943 943  
944 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
945 945  
946 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
947 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
948 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
949 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
950 950  
951 951  
952 -=== 3.3.4 Set Power Output Duration ===
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
953 953  
593 +* (% style="color:blue" %)**AT Command:**
954 954  
955 -Control the output duration 5V . Before each sampling, device will
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
956 956  
957 -~1. first enable the power output to external sensor,
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
958 958  
959 -2. keep it on as per duration, read sensor value and construct uplink payload
601 +Example:
960 960  
961 -3. final, close the power output.
603 + AT+SHHUM=70, ~/~/ Alarm when humidity lower than 70%.
962 962  
963 -(% style="color:blue" %)**AT Command: AT+5VT**
605 +* (% style="color:blue" %)**Downlink Payload:**
964 964  
965 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
967 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 -500(default)
969 -OK
970 -)))
971 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
972 -Close after a delay of 1000 milliseconds.
973 -)))|(% style="width:157px" %)OK
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
974 974  
975 -(% style="color:blue" %)**Downlink Command: 0x07**
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
976 976  
977 -Format: Command Code (0x07) followed by 2 bytes.
978 978  
979 -The first and second bytes are the time to turn on.
612 +=== 3.3.5 Set Alarm Interval ===
980 980  
981 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
982 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
614 +The shortest time of two Alarm packet. (unit: min)
983 983  
616 +* (% style="color:blue" %)**AT Command:**
984 984  
985 -=== 3.3.5 Set Weighing parameters ===
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
986 986  
620 +* (% style="color:blue" %)**Downlink Payload:**
987 987  
988 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
989 989  
990 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
991 991  
992 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
993 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
994 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
995 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
996 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
625 +=== 3.3.6 Get Alarm settings ===
997 997  
998 -(% style="color:blue" %)**Downlink Command: 0x08**
999 999  
1000 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
1001 1001  
1002 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1003 1003  
1004 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
632 +**Example:**
1005 1005  
1006 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1007 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1008 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1009 1009  
1010 1010  
1011 -=== 3.3.6 Set Digital pulse count value ===
637 +**Explain:**
1012 1012  
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1013 1013  
1014 -Feature: Set the pulse count value.
641 +=== 3.3.7 Set Interrupt Mode ===
1015 1015  
1016 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1017 1017  
1018 -(% style="color:blue" %)**AT Command: AT+SETCNT**
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1019 1019  
1020 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1021 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1022 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1023 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1024 1024  
1025 -(% style="color:blue" %)**Downlink Command: 0x09**
1026 -
1027 -Format: Command Code (0x09) followed by 5 bytes.
1028 -
1029 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1030 -
1031 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1032 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1033 -
1034 -
1035 -=== 3.3.7 Set Workmode ===
1036 -
1037 -
1038 -Feature: Switch working mode.
1039 -
1040 -(% style="color:blue" %)**AT Command: AT+MOD**
1041 -
1042 1042  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1043 1043  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1044 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1045 1045  OK
653 +the mode is 0 =Disable Interrupt
1046 1046  )))
1047 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1048 -OK
1049 -Attention:Take effect after ATZ
1050 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1051 1051  
1052 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1053 1053  
1054 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1055 1055  
1056 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1057 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1058 1058  
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1059 1059  
1060 1060  = 4. Battery & Power Consumption =
1061 1061  
... ... @@ -1083,16 +1083,10 @@
1083 1083  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1084 1084  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085 1085  
1086 -
1087 1087  = 6. FAQ =
1088 1088  
1089 -== 6.1 Where can i find source code of SN50v3-LB? ==
1090 1090  
1091 1091  
1092 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1093 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1094 -
1095 -
1096 1096  = 7. Order Info =
1097 1097  
1098 1098  
... ... @@ -1116,10 +1116,8 @@
1116 1116  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1117 1117  * (% style="color:red" %)**NH**(%%): No Hole
1118 1118  
1119 -
1120 1120  = 8. ​Packing Info =
1121 1121  
1122 -
1123 1123  (% style="color:#037691" %)**Package Includes**:
1124 1124  
1125 1125  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1131,10 +1131,8 @@
1131 1131  * Package Size / pcs : cm
1132 1132  * Weight / pcs : g
1133 1133  
1134 -
1135 1135  = 9. Support =
1136 1136  
1137 1137  
1138 1138  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1139 -
1140 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
742 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0