<
From version < 43.8 >
edited by Xiaoling
on 2023/05/16 13:49
To version < 39.2 >
edited by Saxer Lin
on 2023/05/13 13:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,25 +291,30 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
300 300  Temperature(DS18B20)
298 +
301 301  (PC13)
302 -)))|(% style="width:78px" %)(((
300 +)))|(((
303 303  ADC
302 +
304 304  (PA4)
305 305  )))|(% style="width:216px" %)(((
306 306  Digital in(PB15) &
307 -Digital Interrupt(PA8)
308 -)))|(% style="width:308px" %)(((
306 +
307 +Digital Interrupt(PA8)
308 +
309 +
310 +)))|(% style="width:342px" %)(((
309 309  Temperature
312 +
310 310  (SHT20 or SHT31 or BH1750 Illumination Sensor)
311 -)))|(% style="width:154px" %)(((
314 +)))|(% style="width:171px" %)(((
312 312  Humidity
316 +
313 313  (SHT20 or SHT31)
314 314  )))
315 315  
... ... @@ -320,23 +320,25 @@
320 320  
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 -(% style="width:1011px" %)
324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
325 -|**Value**|BAT|(% style="width:196px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
326 326  Temperature(DS18B20)
330 +
327 327  (PC13)
328 -)))|(% style="width:87px" %)(((
332 +)))|(((
329 329  ADC
334 +
330 330  (PA4)
331 -)))|(% style="width:189px" %)(((
336 +)))|(((
332 332  Digital in(PB15) &
338 +
333 333  Digital Interrupt(PA8)
334 -)))|(% style="width:208px" %)(((
340 +)))|(((
335 335  Distance measure by:
336 336  1) LIDAR-Lite V3HP
337 337  Or
338 338  2) Ultrasonic Sensor
339 -)))|(% style="width:117px" %)Reserved
345 +)))|Reserved
340 340  
341 341  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
342 342  
... ... @@ -352,22 +352,24 @@
352 352  
353 353  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354 354  
355 -(% style="width:1113px" %)
356 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
357 -|**Value**|BAT|(% style="width:183px" %)(((
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
358 358  Temperature(DS18B20)
364 +
359 359  (PC13)
360 -)))|(% style="width:173px" %)(((
366 +)))|(((
361 361  Digital in(PB15) &
368 +
362 362  Digital Interrupt(PA8)
363 -)))|(% style="width:84px" %)(((
370 +)))|(((
364 364  ADC
372 +
365 365  (PA4)
366 -)))|(% style="width:323px" %)(((
374 +)))|(((
367 367  Distance measure by:1)TF-Mini plus LiDAR
368 368  Or 
369 369  2) TF-Luna LiDAR
370 -)))|(% style="width:188px" %)Distance signal  strength
378 +)))|Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
... ... @@ -394,20 +394,25 @@
394 394  )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
395 395  |**Value**|(% style="width:68px" %)(((
396 396  ADC1
405 +
397 397  (PA4)
398 398  )))|(% style="width:75px" %)(((
399 399  ADC2
409 +
400 400  (PA5)
401 401  )))|(((
402 402  ADC3
413 +
403 403  (PA8)
404 404  )))|(((
405 405  Digital Interrupt(PB15)
406 406  )))|(% style="width:304px" %)(((
407 407  Temperature
419 +
408 408  (SHT20 or SHT31 or BH1750 Illumination Sensor)
409 409  )))|(% style="width:163px" %)(((
410 410  Humidity
423 +
411 411  (SHT20 or SHT31)
412 412  )))|(% style="width:53px" %)Bat
413 413  
... ... @@ -426,9 +426,11 @@
426 426  (PC13)
427 427  )))|(% style="width:82px" %)(((
428 428  ADC
442 +
429 429  (PA4)
430 430  )))|(% style="width:210px" %)(((
431 431  Digital in(PB15) &
446 +
432 432  Digital Interrupt(PA8) 
433 433  )))|(% style="width:191px" %)Temperature2(DS18B20)
434 434  (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
... ... @@ -459,20 +459,25 @@
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% style="width:767px" %)
477 +(% style="width:982px" %)
463 463  |=(((
464 464  **Size(bytes)**
465 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
466 -|**Value**|BAT|(% style="width:193px" %)(((
480 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
481 +|**Value**|BAT|(% style="width:282px" %)(((
467 467  Temperature(DS18B20)
483 +
468 468  (PC13)
469 -)))|(% style="width:85px" %)(((
485 +
486 +
487 +)))|(% style="width:119px" %)(((
470 470  ADC
489 +
471 471  (PA4)
472 -)))|(% style="width:186px" %)(((
491 +)))|(% style="width:279px" %)(((
473 473  Digital in(PB15) &
493 +
474 474  Digital Interrupt(PA8)
475 -)))|(% style="width:100px" %)Weight
495 +)))|(% style="width:106px" %)Weight
476 476  
477 477  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478 478  
... ... @@ -495,12 +495,15 @@
495 495  (PC13)
496 496  )))|(% style="width:108px" %)(((
497 497  ADC
518 +
498 498  (PA4)
499 499  )))|(% style="width:126px" %)(((
500 500  Digital in
522 +
501 501  (PB15)
502 502  )))|(% style="width:145px" %)(((
503 503  Count
526 +
504 504  (PA8)
505 505  )))
506 506  
... ... @@ -509,41 +509,46 @@
509 509  
510 510  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
511 511  
512 -(% style="width:1108px" %)
513 513  |=(((
514 514  **Size(bytes)**
515 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
516 -|**Value**|BAT|(% style="width:188px" %)(((
537 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
538 +|**Value**|BAT|(((
517 517  Temperature(DS18B20)
540 +
518 518  (PC13)
519 -)))|(% style="width:83px" %)(((
542 +)))|(((
520 520  ADC
544 +
521 521  (PA5)
522 -)))|(% style="width:184px" %)(((
546 +)))|(((
523 523  Digital Interrupt1(PA8)
524 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
548 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
525 525  
526 526  [[image:image-20230513111203-7.png||height="324" width="975"]]
527 527  
528 528  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
529 529  
530 -(% style="width:922px" %)
554 +(% style="width:917px" %)
531 531  |=(((
532 532  **Size(bytes)**
533 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
557 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
534 534  |**Value**|BAT|(% style="width:207px" %)(((
535 535  Temperature(DS18B20)
560 +
536 536  (PC13)
537 537  )))|(% style="width:94px" %)(((
538 538  ADC1
564 +
539 539  (PA4)
540 540  )))|(% style="width:198px" %)(((
541 541  Digital Interrupt(PB15)
542 542  )))|(% style="width:84px" %)(((
543 543  ADC2
570 +
544 544  (PA5)
545 -)))|(% style="width:82px" %)(((
572 +)))|(% style="width:79px" %)(((
546 546  ADC3
574 +
547 547  (PA8)
548 548  )))
549 549  
... ... @@ -558,21 +558,27 @@
558 558  )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
559 559  |**Value**|BAT|(((
560 560  Temperature1(DS18B20)
589 +
561 561  (PC13)
562 562  )))|(((
563 563  Temperature2(DS18B20)
593 +
564 564  (PB9)
565 565  )))|(((
566 566  Digital Interrupt
597 +
567 567  (PB15)
568 568  )))|(% style="width:193px" %)(((
569 569  Temperature3(DS18B20)
601 +
570 570  (PB8)
571 571  )))|(% style="width:78px" %)(((
572 572  Count1
605 +
573 573  (PA8)
574 574  )))|(% style="width:78px" %)(((
575 575  Count2
609 +
576 576  (PA4)
577 577  )))
578 578  
... ... @@ -616,7 +616,7 @@
616 616  
617 617  ==== 2.3.3.2  Temperature (DS18B20) ====
618 618  
619 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
653 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
620 620  
621 621  More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
622 622  
... ... @@ -644,7 +644,7 @@
644 644  (((
645 645  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
646 646  
647 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
681 +**Note:**The maximum voltage input supports 3.6V.
648 648  )))
649 649  
650 650  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
... ... @@ -655,18 +655,17 @@
655 655  
656 656  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
657 657  
658 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
692 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
659 659  
660 -
661 661  ==== 2.3.3.5 Digital Interrupt ====
662 662  
663 663  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
664 664  
665 -(% style="color:blue" %)**~ Interrupt connection method:**
698 +**~ Interrupt connection method:**
666 666  
667 667  [[image:image-20230513105351-5.png||height="147" width="485"]]
668 668  
669 -(% style="color:blue" %)**Example to use with door sensor :**
702 +**Example to use with door sensor :**
670 670  
671 671  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
672 672  
... ... @@ -674,7 +674,7 @@
674 674  
675 675  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 676  
677 -(% style="color:blue" %)**~ Below is the installation example:**
710 +**~ Below is the installation example:**
678 678  
679 679  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
680 680  
... ... @@ -699,7 +699,7 @@
699 699  
700 700  The command is:
701 701  
702 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
735 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703 703  
704 704  Below shows some screen captures in TTN V3:
705 705  
... ... @@ -714,14 +714,14 @@
714 714  
715 715  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
716 716  
717 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
750 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
718 718  
719 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
752 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
720 720  
721 721  Below is the connection to SHT20/ SHT31. The connection is as below:
722 722  
723 723  
724 -[[image:image-20230513103633-3.png||height="448" width="716"]]
757 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
725 725  
726 726  The device will be able to get the I2C sensor data now and upload to IoT Server.
727 727  
... ... @@ -788,9 +788,9 @@
788 788  
789 789  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
790 790  
791 -[[image:image-20230512172447-4.png||height="416" width="712"]]
824 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
792 792  
793 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
826 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
794 794  
795 795  
796 796  ==== 2.3.3.12  Working MOD ====
... ... @@ -811,8 +811,6 @@
811 811  * 7: MOD8
812 812  * 8: MOD9
813 813  
814 -== ==
815 -
816 816  == 2.4 Payload Decoder file ==
817 817  
818 818  
... ... @@ -820,7 +820,7 @@
820 820  
821 821  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
822 822  
823 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
854 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
824 824  
825 825  
826 826  
... ... @@ -864,6 +864,7 @@
864 864  
865 865  === 3.3.1 Set Transmit Interval Time ===
866 866  
898 +
867 867  Feature: Change LoRaWAN End Node Transmit Interval.
868 868  
869 869  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -889,11 +889,9 @@
889 889  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
890 890  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
891 891  
892 -=== ===
893 -
894 894  === 3.3.2 Get Device Status ===
895 895  
896 -Send a LoRaWAN downlink to ask the device to send its status.
926 +Send a LoRaWAN downlink to ask device send Alarm settings.
897 897  
898 898  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
899 899  
... ... @@ -902,6 +902,7 @@
902 902  
903 903  === 3.3.3 Set Interrupt Mode ===
904 904  
935 +
905 905  Feature, Set Interrupt mode for GPIO_EXIT.
906 906  
907 907  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -938,8 +938,6 @@
938 938  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
939 939  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
940 940  
941 -=== ===
942 -
943 943  === 3.3.4 Set Power Output Duration ===
944 944  
945 945  Control the output duration 5V . Before each sampling, device will
... ... @@ -969,11 +969,9 @@
969 969  
970 970  The first and second bytes are the time to turn on.
971 971  
972 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
973 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
974 974  
975 -=== ===
976 -
977 977  === 3.3.5 Set Weighing parameters ===
978 978  
979 979  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
... ... @@ -988,6 +988,7 @@
988 988  
989 989  (% style="color:blue" %)**Downlink Command: 0x08**
990 990  
1018 +
991 991  Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
992 992  
993 993  Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
... ... @@ -998,8 +998,6 @@
998 998  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
999 999  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1000 1000  
1001 -=== ===
1002 -
1003 1003  === 3.3.6 Set Digital pulse count value ===
1004 1004  
1005 1005  Feature: Set the pulse count value.
... ... @@ -1015,6 +1015,7 @@
1015 1015  
1016 1016  (% style="color:blue" %)**Downlink Command: 0x09**
1017 1017  
1044 +
1018 1018  Format: Command Code (0x09) followed by 5 bytes.
1019 1019  
1020 1020  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
... ... @@ -1022,8 +1022,6 @@
1022 1022  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1023 1023  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1024 1024  
1025 -=== ===
1026 -
1027 1027  === 3.3.7 Set Workmode ===
1028 1028  
1029 1029  Feature: Switch working mode.
... ... @@ -1043,13 +1043,12 @@
1043 1043  
1044 1044  (% style="color:blue" %)**Downlink Command: 0x0A**
1045 1045  
1071 +
1046 1046  Format: Command Code (0x0A) followed by 1 bytes.
1047 1047  
1048 1048  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1049 1049  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1050 1050  
1051 -= =
1052 -
1053 1053  = 4. Battery & Power Consumption =
1054 1054  
1055 1055  
... ... @@ -1123,4 +1123,4 @@
1123 1123  
1124 1124  
1125 1125  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1126 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1150 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0